Универсальная сельскохозяйственная техника

Контрольная работа. Вариант 2

Содержание

Введение

7. Агротехнические требования к универсальным пропашным тракторам

34. Принцип районирования тракторов по типу ходовой системы

49. Влияние использования тяговой мощности на производительность машинно-тракторного агрегата и себестоимость тракторных работ

94. Устройство и рабочий процесс машины для внесения аммиачной воды

172. Устройство, рабочий процесс и технологические регулировки триера

240. Устройство и работа навесного кротователя

Заключение

Список литературы

Введение

Современная сельскохозяйственная техника широко используется на всех этапах сельскохозяйственного производства: при подготовке и обработке почвы, посеве и сборке урожая, заготовке кормов.

Существует ошибочное мнение, что импортная сельскохозяйственная техника надежнее и экономичнее отечественных моделей именно потому, что она дороже.

Чтобы развеять этот миф, нужно посмотреть в лицо фактам. Производство сельскохозяйственной техники в Европе, связано с высокой себестоимостью и оплатой труда рабочих. Дорогие энергоносители, высокие заработные платы, значительные налоги и, в конце концов, ввозные пошлины и транспортные расходы, выводят на российский рынок сельскохозяйственной техники неимоверно дорогие машины. В то время, как отечественная сельскохозяйственная техника отвечает всем требованиям российских природно-климатических условий, агропромышленных технологий, почвенным особенностям, в 3-6 раз дешевле импортных аналогов и хорошо адаптирована к российским сортам ГСМ.

При этом, отечественная сельскохозяйственная техника на базе тракторов Владимирского тракторного завода, Липецкого тракторного завода и тракторов МТЗ не уступает по надежности и производительности европейским маркам. К тому же, содержание, ремонт, обслуживание и запасные части для отечественных моделей гораздо дешевле и доступнее. Для текущего ремонта отечественной сельскохозяйственной техники не нужно выписывать запасные части из-за рубежа, что позволяет избежать долговременных простоев в случае поломки, ведь запасные части для российских тракторов всегда имеются в наличии.

Кроме этого, выгодные условия приобретения отечественной сельскохозяйственной техники обеспечиваются решением правительства Российской Федерации о бюджетной поддержке сельхозпроизводителей на приобретение агропромышленной техники российского производства. Это еще один стимул и существенное преимущество для ведения аграрного бизнеса в сложной экономической ситуации.

В настоящее время главный акцент делается на поставку сельхозпроизводителям универсальных механизированных комплексов на базе тракторных агрегатов, которые позволяют минимизировать затраты сельскохозяйственного производства, эффективно осуществить полный цикл сельскохозяйственных операций и снизить сроки окупаемости приобретенной техники. Все эти факторы делают сельскохозяйственную технику российского и белорусского производства, несомненно, конкурентоспособной в России и странах СНГ, и сохраняют ее доминирующие позиции на внутреннем агропромышленном рынке.

7. Агротехнические требования к универсальным пропашным тракторам

Универсально-пропашной трактор ЛТЗ-60 тягового класса 1,4 предназначен для возделывания пропашных культур, пахоты сплошной культивации и других работ общего назначения; посева зерновых и трав; уборки пропашных и колосовых культур, выполнения транспортных и погрузо-разгрузочных работ[1] .

Конструкция трактора обеспечивает оптимальное использование тяговой мощности при выполнении тех или иных работ. Масса трактора снижена по сравнению с массой аналогов. Конструкторами оптимизировано распределение веса узлов трактора ЛТЗ-60 на передний и задний мост. Все это обеспечивает экономию топлива и позволяет снижать себестоимость продукции. Это подтверждается результатом государственных испытаний совместно с трактором МТЗ-80. К несомненным достоинствам конструкции трактора ЛТЗ-60 относят: легкое управление и устойчивость хода; наличие полного реверса на все передачи, что повышает маневренность хода; автоматическое включение переднего ведущего моста, положительно сказывающееся на характеристиках пробуксовки задних колес.

Трактор ЛТЗ-60 имеет герметичную шумовиброизолированную кабину с системой вентиляции и отопления, большой поверхностью остекления и удобным, регулируемым по росту и весу водителя, сиденьем. Это позволяет эксплуатировать трактор в любых климатических зонах. Наши трактора успешно эксплуатируются не только в России, но и за рубежом.

Трактор агрегатируется более чем со 120 машинами и орудиями, охватывающими весь комплекс сельхозработ. Широкие возможности агрегатирования трактора ЛТЗ-60 позволяют его использовать не только на сельскохозяйственных работах, но и в строительстве, лесном хозяйстве, благоустройстве территории, земляных работах и т. д. АО “ЛТЗ” выпускает широкий спектр коммунальной техники на основе ЛТЗ-60. Трактор ЛТЗ-60 агрегатируется с большинством сельскохозяйственных машин и приспособлений для трактора МТЗ-80.

Липецким тракторным заводом выпускаются несколько модификаций трактора ЛТЗ-60. ЛТЗ-60АВ имеет дизель Д65М1Л Рыбинского моторного завода с водяным охлаждением, ЛТЗ-60АБ оснащен дизелем Д248 Минского моторного завода с водяным охлаждением. ЛТЗ-60А имеет дизель воздушного охлаждения Д144 Владимирского тракторного завода. Модификация трактора ЛТЗ-60АВ-01 используется для обслуживания ферм старого образца и имеет более низкую высоту кабины.

Конструктивные изменения по тракторам[2] :

– Изменено рулевое управление. Установлено управление гидрообъемное с гидроцилиндром в рулевой трапеции, что позволило снизить усилие на рулевом колесе.

– Разработана модернизированная кабина трактор ЛТЗ-60АБТ, позволяет за счет увеличения объема кабины улучшить условия труда тракториста, улучшается внешний вид трактора, что позволяет увеличить продажу тракторов.

– Установка стеклопластиковых деталей верхнего строения трактора: крыши, капота, передних и задних крыльев кабины для улучшения внешнего вида трактора.

– Установка двух видов дизельных двигателей:

– производства ОАО “ВМТЗ” Д144 – воздушного охлаждения;

– производства УП “ММЗ” Д248 – водяного охлаждения;

– позволяющие эксплуатировать трактора ЛТЗ-60 в различных климатических зонах не только России, но и всех стран мира.

– Отработанная конструкция всех систем трактора, позволяет снизить до минимума ремонтнопригодность и большую надежность тракторов во время эксплуатации.

– Навесная система с телескопическими тягами и растяжками позволяет расширить сферу применяемости тракторов на возделывании и уборке картофеля, заготовке кормов, внесении удобрений и позволяет дополнительно агрегатироваться с рядом с/х машин, требующие установки заднего навесного устройства трактора с регулируемыми тягами.

– 2-х скоростной удлинитель ВОМ с числом оборотов 540 об/мин. и 1000 об/мин. дает возможность агрегатироваться с с/х машинами, требующими привод ВОМ 1000 об/мин.

– Унифицированная КПП 7-ми скоростная позволяет повысить надежность КПП и соответственно в целом трактора за счет увеличения ширины венцов шестерен, снизить скорость на первой передние с 5,96 км/ч до 3,42 км/ч, что позволит использовать первую передачу для выполнения работ, требующих больших тяговых усилий.

– Ведомый диск муфты сцепления с демпферными пружинами металлокерамическими накладками позволяет повысить срок службы трансмиссии, за счет снижения динамических нагрузок в 1,5 -1,8 раза.

34 Принцип районирования тракторов по типу ходовой системы

По типу ходовой системы подразделяются на колесные и гусеничные[3] .

Колесные подразделяются по “колесной формуле”, отражающей общее число колес, число ведущих колес и их размеры. Так, “классический” четырехколесный трактор с передними управляемыми колесами меньшего диаметра и задними ведущими большего диаметра имеет колесную формулу 4К2. Здесь первая цифра “4” показывает общее число колес, а вторая цифра “2” – число ведущих колес. Если при тех же данных и передние колеса ведущие, но меньшего диаметра, то трактор имеет колесную формулу 4К4а, где вторая цифра “4” показывает, что трактор имеет четыре ведущих колеса (все колеса ведущие), а буква “а” – указывает на меньший диаметр передних ведущих колес. Тракторы со всеми четырьмя ведущими колесами одного диаметра имеют колесную формулу 4К46, где буква “б” указывает на равенство диаметров передних и задних колес. Встречаются тракторы с большим числом ведущих колес, особенно среди лесотехнических и лесохозяйственных (6К6, 8К8). Трактор с одним или двумя сближенными передними управляемыми колесами имеет колесную формулу ЗК2.

Кроме того, тракторы бывают полугусеничные и колесно-гусеничные. В первом случае трактор имеет два движителя (колесный передний управляемый и гусеничный задний ведущий), а во втором – они оба ведущие, но используется только один из движителей в зависимости от условий работы.

49.Влияние использования тяговой мощности на производительность машинно-тракторного агрегата и себестоимость тракторных работ

В повышении эффективности использования машинно-тракторного парка и в снижении себестоимости механизированных работ большая роль принадлежит бухгалтерскому учету. Предложено исчислять ежемесячно фактическую себе стоимость одного га работ, выполняемых машинно-тракторным парком.

Исчисление фактической себестоимости единицы механизированных работ по месяцам, а не в конце года, позволит: повысить оперативность учета в деле снижения себестоимости механизированных работ и точность отнесения выполненных механизированных работ на отдельные аналитические счета потребители принимать более конкретные меры, направленные на снижение себестоимости механизированных работ и повышение показателей работы машинно-тракторного парка. Рассмотрены табличные данные распределения затрат на содержание и эксплуатацию машинно-тракторного парка по счетам аналитического учета потребите лей услуг МТП. Предлагаемый порядок учета и распределения затрат на эксплуатацию и содержание машинно-тракторного парка повысит не только контроль за уровнем себестоимости механизированных работ, но и эффективность использования МТП[4] .

Производительность машинно-тракторного агрегата зависит от конструктивных параметров трактора, машины и агрегата в целом, а также от природных условий, режима и организации производственного процесса. Производительность агрегата – это количество, выполненное в единицу времени, работы, измеренной в соответствующих единицах (Pa, т, м3 ).

Производительность машинно-тракторного агрегата зависит от ширины, скорости движения, времени полезного использования машины.

94. Устройство и рабочий процесс машины для внесения аммиачной воды

Повышение урожайности сельхозкультур за счет внесения минеральных удобрений – широко применяемый метод. Но высокие цены на минеральные удобрения и, соответственно, снижение экономической отдачи от их применения, заставляют обращать внимание на более дешевые, а значит и более эффективные виды удобрений.

Наиболее распространенным из азотных удобрений является аммиачная вода. Стоимость единицы действующего вещества в аммиачной воде в 1,5-2 раза дешевле, чем в аммиачной селитре, т. к. при ее производстве отсутствует ряд технологических операций. Кроме того, затраты на внесение аммиачной воды могут быть сведены к минимуму при совмещении внесения с работами по обработке почвы – культивации или глубокому рыхлению[5] .

Аммиачная вода (аммиак водный технический) применяется для всех почв и для всех культур при обязательной заделке на глубину 10-15 см. Почвой связывается сильно, при осеннем внесении не вымывается осадками. Причем, азот аммиачной воды лучше удерживается почвой, чем азот сыпучих удобрений. Применять аммиачную воду можно как при основной обработке, так и при предпосевной культивации.

Для транспортировки аммиачной воды или других жидких удобрений мы производим емкости для перевозки жидкостей – “Кассета 4500х2” объемом 9000 литров. Такие емкости могут быть установлены в кузов обычного грузового автомобиля.

Для внесения аммиачной воды или других жидких удобрений производятся два вида машин[6] :

– прицепной подкормщик жидкими удобрениями ПЖУ-4500 и ПЖУ-2000 для агрегатирования с культиваторами, глубокорыхлителями или чизельными плугами для сплошного внесения;

– ПЖУ-2500 – автономный агрегат, культиватор-растениепитатель для пропашных культур.

Дозирование аммиачной воды или другого жидкого удобрения аналогично дозированию штанговых опрыскивателей с помощью калиброванного жиклера и изменения давления рабочего раствора. Как и опрыскиватели ПЖУ оборудованы гидромешалками, всасывающим и напорным фильтрами, а также дополнительными фильтрами каждой секции.

Рекомендуемые дозы внесения аммиачной воды (действующего вещества)[7] :

– под зерновые – 40-60 кг/га;

– под технические культуры – 60-90 кг/га;

– под овощные – 50-70 кг/га действующего вещества.

Производимые полевые культиваторы и чизельные плуги позволяют очень качественно и равномерно, на заданную глубину и на больших площадях, вносить аммиачную воду. Причем, даже на глубину 20-30 см, осуществляя так называемое адресное внесение удобрений под корневую систему растений.

Такой метод адресного внесения минеральных удобрений на глубину 20-30 см является наиболее прогрессивным способом применения удобрений с максимальным результатом увеличения урожайности.

Для внесения аммиачной воды используют специальные машины (ПОУ) с приспособлением УЛП-8, обеспечивающими одновременную заделку на необходимую глубину. Учитывая, что аммиак в почве перемещается па 8-10 см, для культур сплошного сева расстояние между сошниками (наконечниками) должно быть не более 20-22 см, а для пропашных культур должно равняться ширине одного междурядья. Более эффективно применение этих форм удобрений совместно с внесением органических удобрений. Не следует допускать внесения аммиачных азотных удобрений на одном и том же участке несколько лет подряд, так как в результате усиления минерализации органического вещества это может приводить к снижению содержания органического вещества в почве.

172 Устройство, рабочий процесс и технологические регулировки триера

Триеры применяют для выделения примесей, отличающихся от зерен основной культуры длиной. К примесям, выделяемым на триерах, относят семена куколя, которые короче зерен пшеницы, или семена овсюга, которые длиннее зерен пшеницы.

Триеры по конструктивному исполнению основных рабочих органов подразделяют на две группы[8] : цилиндрические и дисковые. Наиболее широкое применение на зерноперерабатывающих предприятиях получили дисковые триеры, которые имеют большую производительность при меньших габаритах и отличаются более высокой технологической эффективностью.

Цилиндрические триеры в зависимости от значения окружной скорости разделяют на тихоходные (v = 0,3…0,5 м/с) и быстроходные (v = 1,2…1,5 м/с). Тихоходные триеры выпускают с наружным сетчатым цилиндром и без него. Первые применяют для очистки зерна от коротких и длинных примесей и его сортирования по толщине, вторые – для контроля отходов. Быстроходные цилиндрические триеры используют для очистки зерна от коротких и... длинных примесей, а также для сортирования семян. Зерно в машину поступает в начале цилиндра, а в некоторых конструкциях – по всей длине. Часто эти триеры снабжают ворошильным механизмом.

Цилиндрический триер состоит из стального цилиндра со штампованными ячейками на внутренней поверхности и шнека, расположенного в желобе. При вращении цилиндра с зерном в ячейки триера попадают из смеси частицы зернового материала, длина которых меньше диаметра ячеек, и поднимаются вверх; падают в желоб, находящийся внутри цилиндра и выводятся наружу шнеком. В цилиндре остаются частицы, длина которых больше диаметра ячеек и которые не укладываются в них по длине, и выходят сходом по цилиндру с другой стороны. Степень разделения зерновой смеси на фракции по длине зависит от уровня, на котором установлена верхняя грань желоба.

Триеры, выделяющие из зернового материала короткие примеси (например, куколь, битое зерно и т. п.), называются овсюгоотборными. У них очищенное зерно выходит из цилиндра, а примеси – из желоба.

Триеры, предназначенные для отделения длинных зерновых примесей, называют овсюжными. В них зерно выходит из желоба, а примеси – из цилиндра. У выходного конца овсюгоотборного цилиндра устанавливают кольцо – диафрагму, которая способствует образованию слоя зернового материала внутри цилиндра.

В дисковом триере ячейки выполнены на поверхности чугунных дисков. При вращении дисков в ячейки попадают короткие зерна, которые затем выпадают в желобки и выводятся из машины. Цилиндрические триеры с внутренней ячеистой поверхностью изготавливают одинарного и двойного действия. Триеры одинарного действия имеют по всей длине цилиндра ячейки одного типа и размера и выделяют только короткие или только длинные примеси. Триеры двойного действия на различных участках цилиндра по длине имеют ячейки двух размеров для отделения длинных и коротких примесей[9] .

Дисковые триеры выпускают однороторными. Для сокращения занимаемой производственной площади их комбинируют в двух – и четырехроторные агрегаты, включающие триеры для отбора длинных и коротких примесей. Дисковые триеры для выделения коротких примесей снабжают контрольными дисками.

Основными рабочими органами дисковых триеров являются кольцевидные диски с ячейками на боковых поверхностях. Карманообразные ячейки расположены по концентрическим окружностям. Диски закреплены на горизонтальном валу и вращаются в вертикальной плоскости. Нижняя часть дисков погружена в зерновую смесь. Форма и размеры ячеек, скорость вращения дисков подобраны таким образом, что короткие компоненты обрабатываемой смеси захватываются ячейками, поднимаются вверх и при определенном угле поворота, который зависит от частоты вращения дисков и коэффициента трения частиц о материал диска, выпадают из ячеек на наклонные лотки и выводятся из машины. Длинные компоненты смеси тоже захватываются ячейками, но занимают в них неустойчивое положение и выпадают из ячеек при меньшем угле поворота дисков. Фракции могут быть порознь выведены для дальнейшей обработки в этой или последующих машинах.

При движении зерновой смеси вдоль машины концентрация короткой фракции в ней снижается. В куколеотборниках ячейки дисков поднимают и отбирают куколь и дробленое зерно, а в овсюгоотборниках роль коротких компонентов выполняет основная культура – зерно.

Эффективность работы триера зависит от частоты вращения дисков, положения лотков и заслонок, от формы и размеров ячеек, коэффициента трения зерновой смеси о поверхность дисков, концентрации, состава примесей и других факторов. Все эти факторы не поддаются оперативному управлению. При эксплуатации триеров необходимо обеспечивать стабильную подачу зерна, добиваясь равномерного его распределения и необходимого уровня в загрузочном устройстве. Регулируют подачу и время обработки зерна при помощи заслонок загрузочного и других устройств.

Надежная и эффективная работа триеров возможна при очищенных ячейках, влажности зерна не выше 18 % и отсутствии в исходном зерне твердых и грубых примесей. Поэтому исходная зерновая смесь должна предварительно пройти соответствующую очистку, а при необходимости и сушку. Отличительная особенность сепарирования в триерах – высокая эффективность и небольшая удельная производительность. В дисковых триерах эффективность выделения коротких фракций достигает 95 %, а в цилиндрических 85…90 %.

240 Устройство и работа навесного кротователя

Кротовины создают одновременно со впашкой зяби, для чего на одном или на двух корпусах плуга ставят кротователи. При вспашке с кротованием в подпахотном горизонте почвы образуется щель, через которую вода поступает в кротовину – дрену диаметром 60- 80 мм. В большинстве случаев кротовины создают на глубине 35-40 см, а иногда и глубже. В одном из исследований, проведенных в Курской области, при вспашке зяби с кротованием, для чего на одном из корпусов плуга устанавливали кротователи, было отмечено увеличение запасов влаги в почве в среднем за пять лет на 30 мм. При дополнительных затратах около 1 руб/га кротование обеспечило прибавку урожая кукурузы, сахарной свеклы и овощных культур на 20 %, зерновых – на 15-26 и картофеля – на 25-30%[10] .

В исследованиях Ижевского СХИ, проведенных на склоне 1,5-2,5°, в результате закладки кротовых дрен через каждые 2,5 и 5 м на глубину 45-55 см был полностью предотвращен смыв почвы (на контроле он составил 3-5 т/га), запасы влаги в слое ее 0-50 см возросли при этом на 12-20 мм и урожайность озимой ржи повысилась на 9-20 %. При кротовании среднесмы-тых дерново-подзолистых почв на склоне 3-4° смыв уменьшился с 62 до 24 т/га, а запасы влаги в почве увеличились на 28 мм, Кротование подпахотного слоя почвы и формирование микролиманов одновременно со вспашкой широко применяют в Татарской АССР. Его проводят специально созданным агрегатом (Ф. X. Шакиров, В. П. Кирисов и др., 1975). Для этого на один или на два корпуса четырехкорпусного плуга устанавливают кротователи (на 20 см глубже лемеха) для прокладки кротовин диаметром 60 мм, на другом корпусе – удлиненный отвал для формирования продольного валика в направлении вспашки. На раме смонтирован перемычкоделатель, образующий поперечные валики между продольными.

Разработаны прицепной и навесной варианты этого агрегата. Глубина микролиманов, образующихся при вспашке на глубину 20-22 см, составляет 30 см. Расстояние между продольными валиками такое же, как между центрами гусениц трактора. Выявлено, что коэффициент стока талых вод снижается при этом в среднем с 0,80 до 0,34,ежегодная дополнительная влагозарядка почвы при снеготаянии достигает 930 ма/га, смыв почвы уменьшается до 1 т/га, а урожайность зерновых на светло-серых лесных почвах возрастает в среднем на 3 ц/га[11] .

В колхозе имени Кирова Арского района Татарской АССР в результате создания микролиманов и кротовин на склоновых землях коэффициент стока в среднем за 1978-1980 гг. снизился с 0,88 до 0,55, в почву впиталось дополнительно 460 м3/га воды, смыв почвы уменьшился с 7,3 до 1,2 т/га, а урожайность зерновых культур повысилась на 2Г5 ц/га в сравнении с контролем (обычная зябь без использования водопоглотительных приемов). Нашей промышленностью выпускаются щелеватели и кротователи различных типов. Одни из них необходимы в засушливых условиях для перехвата и максимального использования вод склонового стока и предотвращения эрозии, другие – для осушения переувлажненных как склоновых, так и равнинных земель. Характеристика этих орудий приведена ниже.

Рыхлитель-щелеватель навесной РЩЯ-3-120. Предназначен для глубокого рыхления и щелевания почвы. Рабочие органы этого орудия – один средний и два боковых корпуса. Средний корпус служит для рыхления и щелевания почвы на глубину до 70 см, а боковые корпуса рыхлят почву на глубину до 42 см. Рабочий захват – 1Г9 м, производительность -1,2 км за 1 ч чистой работы.

Щелерез-крокшатель навесной ШН-2-140. Применяют для щелевания и кротования почвы с одновременным образованием валиков высотой до 12 см с целью уменьшения стока воды и эрозии почвы на склонах до 10°. Рабочие органы щелереза-кротователя – долотья, дренеры, дисковые ножи, гладкие и игольчатые диски. Дисковые ножи служат для разреза дернины впереди стойки щелереза на глубину 10-12 см. Валикоделатели состоят из сферических и игольчатых дисков. Глубина хода орудия – до 40 см, захват – 2,8 м, расстояние между щелями-1,4 м. Агрегатируется с тракторами Т-74, ДТ-75 и ДТ-75Б. Рабочая скорость – 5,2-6,1 км/ч, производительность 1,6 га за 1 ч чистой работы[12] .

Кротователь навесной на тракторе Т-100 МГП. Используют для прокладки кротового дренажа. Глубина прокладки кротовин – 0,4-1,4 м.

Кротователь навесной МД-100. Применяют для прокладки кротового дренажа. Агрегатируется с трактором ДТ-75Б. Глубина дренирования – 0,7-1,2 м.

Кротодренажная машина навесная Д-657. Предназначена для прокладки кротового дренажа на глубину 0,5- 1,2 м. Рабочим органом ее является нож с присоединенной к нему гибкой сетью дрен диаметром 80; 100; 200 и 250 мм. Кротовину формируют уплотнением грунта в случае протаскивания дренера. Агрегатируется с трактором ДТ-75Б. За один проход агрегата прокладывается одна кротовина. Производительность-1,3-1,5 км за 1 ч чистой работы.

Заключение

К преимуществам использования сельскохозяйственной техники относятся:

– значительное повышение производительности труда с привлечением минимально необходимой рабочей силы;

– бизнес-инвестиции в аграрный комплекс и покупку сельскохозяйственной техники, являются прогрессивным и, потенциально, самым дальновидным мероприятием на территории России в ближайшие годы;

– увеличение единиц сельскохозяйственной техники неизменно ведет к высвобождению времени для организации нового производства, дает возможность увеличения поголовья скота и посевных площадей;

– наличие сельскохозяйственной техники различного назначения позволяет диверсифицировать сельскохозяйственное производство, как в рамках крупных аграрных фирм, так и в индивидуальных фермерских хозяйствах, что является лучшим страхованием финансовых рисков;

– приобретенная техника может быть использована в дальнейшем в качестве залога для получения срочного кредита в банке;

– применение универсальной сельскохозяйственной техники ведет к значительному снижению себестоимости единицы продукции.

Использование сельскохозяйственной техники, прежде всего, облегчает труд сельскохозяйственных рабочих и увеличивает возможности расширения производства.

Виды сельскохозяйственной техники, предлагаемые производителями России и стран СНГ:

– тракторы сельскохозяйственные;

– зерноуборочные и кормоуборочные комбайны;

– плуги тракторные;

– культиваторы;

– сеялки;

– картофелесажалки;

– жатки валковые;

– комплексы для уборки сахарной свеклы;

– картофелеуборочные комбайны и копатели;

– кукурузоуборочные комбайны и приставки;

– льноуборочные комбайны;

– машины для внесения минеральных и органических удобрений;

– техника для химической защиты растений.

В настоящее время поставляются и внедряются комбинированные широкозахватные машины для обработки почвы, универсальные зерноочистительные машины, тяжелые стерневые культиваторы, пневматические сеялки, блочно-модульные широкозахватные культиваторы, ножевые бороны, сверхтяжелые дисковые бороны, машины для нулевой обработки почвы и посева.

Вся сельскохозяйственная техника отечественного производства наилучшим образом подходит для ведения аграрного бизнеса в России, отличается надежностью и нетребовательностью в процессе эксплуатации.

Список литературы

1. http://www. tehnokor. ru/catalog/selskohozjaistvennaja-tehnika. html

2. http://pochvod. ru/75/

3. Астахов М. В., Корнилов Е. И. Калуга: МГТУ им. Н. Э. Баумана Калужский филиал, 2008.

4. Балабин И. В., Прутин В. А. Автомобильные и тракторные колеса. Челябинск, 2003.

5. Бузенков Г. Н. Машины для посева сельхоз. культур. – М.: Машиностроение, 2006.

6. Кленин Н. И., Егоров В. Г. Сельскохозяйственные и мелиоративные машины. – М.: КолосС, 2003.

7. Лурье А. Б. Сельскохозяйственные и мелиоративные машины. – Л.: КолосС., 2003.

8. Львов Е. Д. Теория трактора. М.: Машгиз, 2002.

9. Николаенко А. В. Теория, конструкция и расчет автотракторных двигателей. М.: Колос, 2004.

10. Программный комплекс “Традиционные и перспективные технологии возделывания с.-х. культур” – М.: ГВЦ Минсельхозпрода России, 2000.

11. Сельскохозяйственные машины. Теория и технологический расчет. Под ред. Б. Г. Турбина – М.: Машиностроение, 2007

12. Система машин для комплексной механизации сельскохозяйственного производства. Часть 1 Растениеводство – М.: Госагропромком, 2008.

13. Устинов А. Н. и др. Машины для посева и посадки сельхоз. культур. – М.: Машиностроение, 2009

14. Халанский В. М., Горбачев И. В. Сельскохозяйственные машины. – М.: КолосС, 2003.

15. Чудаков Д. А. Основы теории трактора и автомобиля. М.: Колос, 2002.

[1] http://www. tehnokor. ru/catalog/selskohozjaistvennaja-tehnika. html

[2] Чудаков Д. А. Основы теории трактора и автомобиля. М.: Колос, 2002.

[3] Халанский В. М., Горбачев И. В. Сельскохозяйственные машины. – М.: КолосС, 2003.

[4] Устинов А. Н. и др. Машины для посева и посадки сельхоз. культур. – М.: Машиностроение, 2009

[5] Сельскохозяйственные машины. Теория и технологический расчет. Под ред. Б. Г. Турбина – М.: Машиностроение, 2007

[6] Программный комплекс “Традиционные и перспективные технологии возделывания с.-х. культур” – М.: ГВЦ Минсельхозпрода России, 2000.

[7] Программный комплекс “Традиционные и перспективные технологии возделывания с.-х. культур” – М.: ГВЦ Минсельхозпрода России, 2000.

[8] Николаенко А. В. Теория, конструкция и расчет автотракторных двигателей. М.: Колос, 2004.

[9] Львов Е. Д. Теория трактора. М.: Машгиз, 2002.

[10] http://pochvod. ru/75/

[11] Лурье А. Б. Сельскохозяйственные и мелиоративные машины. – Л.: КолосС., 2003.

[12] Астахов М. В., Корнилов Е. И. Калуга: МГТУ им. Н. Э. Баумана Калужский филиал, 2008.


Зараз ви читаєте: Универсальная сельскохозяйственная техника