Аналитическая геометрия

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.

Пусть задана система векторов а1 , а2 , а3 ,…,ал (1) одной размерности.

Определение: система векторов (1) называется линейно-независимой, если равенство a1 а1 +a2 а2 +…+aл ал =0 (2) выполняется лишь в том случае, когда все числа a1 , a2 ,…, aл =0 и ÎR

Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном ai ¹0 (i=1,…,k)

Свойства

1. Если система векторов содержит нулевой вектор, то она линейно зависима

2. Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.

3. Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.

4. Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.

Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.

Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.

Теорема: Если заданы два вектора a и b, причем а¹0 и эти векторы коллинеарны, то найдется такое действительное число g, что b=ga.

Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны.

Доказательство: достаточность. Т. к. векторы коллинеарны, то b=ga. Будем считать, что а, b¹0 (если нет, то система линейно-зависима по 1 свойству). 1b-ga=0. Т. к. коэфф. При b¹0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. aа+bb=0, a¹0. а= – b/a*b. а и b коллинеарны по определению умножения вектора на число.

Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.

Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны. Доказательство: т. к. векторы линейно-зависимы, то aа+bb+gc=0, g¹0. с= – a/g*а – b/g*b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.

БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.

1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы.

В множестве векторов на прямой базис состоит из одного ненулевого вектора.

В качестве базиса множества векторов на плоскости можно взять произвольную пару.

В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов.

2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях.

Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях.

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними.

(а, b)=|a| |b| cos u, u<90, пр-е полож.; u=90, пр-е =0; u>90, пр-е отриц.

Свойства:

1. (а, b)= (b, а)

2. (aа, b)= a (а, b)

3. (а+b, с)= (а, с)+ (b, с)

4. (а, а)=|a|2 – скал. квадрат.

Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0.

Определение: вектор называется нормированным, если его скал. кв. равен 1.

Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован.

Теорема: Если векторы а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат.

Найдем формулу угла между векторами по определению скалярного произведения. cos u=a, b/|a||b|=x1 x2 +y1 y2 +z1 z2 /sqrt(x12 +y12 +z12 )*sqrt(x22 +y22 +z22 )

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: векторным произведением двух векторов a и b обозначаемым [a, b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с, а)=0 и (с, b)=0. 3. а, b, с образуют правую тройку.

Свойства:

1. [a, b]= – [b, a]

2. [aа, b]= a[а, b]

3. [a+b, c]=[a, c]+[b, c]

4. [a, a]=0

Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах.

Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения.

Теорема: Пусть векторы а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй – координаты первого вектора, в третьей – координаты второго.

Определение: ортой вектора а называется вектор ед. длины имеющий одинаковое направление с вектором а. ea =a/|a|

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ.

1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9.Угол между пр.

1. Ах+By+C=0 (1), где A, B одновр. не равны нулю.

Теорема: n(A, B) ортоганален прямой заданной ур-ем (1).

Доказательство: подставим коорд. т. М0 в ур-е (1) и получим Ах0 +By0 +C=0 (1′). Вычтем (1)-(1′) получим А(х-х0 )+B(y-y0 )=0, n(A, B), М0 М(х-х0 , y-y0 ). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M0 M ортоганальны. Т. о. n ортоганлен прямой. Вектор n(A, B) называется нормальным вектором прямой.

Замечание: пусть ур-я А1 х+B1 y+C1 =0 и А2 х+B2 y+C2 =0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А1 =t*А2 и т. д.

Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным.

1. С=0, Ах+By=0 – проходит ч/з (0,0)

2. С=0, А=0, By=0, значит у=0

3. С=0, B=0, Ах=0, значит х=0

4. А=0, By+C=0, паралл. ОХ

5. B=0, Ах+C=0, паралл. OY

2. x/a+y/b=1.

Геом. смысл: прямая отсекает на осях координат отрезки а и b

3. x-x1 /e=y-y1 /m

Пусть на прямой задана точка и напр. вектор прямой (паралл. пр.). Возьмем на прямой произв. точки. q и M1 М(х-х1 ; y-y1 )

4. x-x1 /x2 – x1 =y-y1 /y2 – y1

Пусть на прямой даны две точки М1 (x1 ;y1 ) и М2 (x2 ;y2 ). Т. к. на прямой заданы две точки, то задан направляющий вектор q(x2 – x1 ; y2 – y1 )

5. y=kb+b.

U – угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u

Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x1 /e/e=y-y1 /m/e. y-y1 =k(x-x1 ) при y1 – kx1 =b, y=kx+b

6. xcosq+ysinq-P=0

Q – угол между вектором ОР и положительным напр. оси ОХ.

Задача: записать ур-е прямой, если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq, sinq). Пусть М(x, y) – произв. точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал. произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части.

Задача: прямая задана общим ур-ем. Перейти к норм. виду.

Ах+By+C=0

Xcosq+ysinq-P=0

Т. к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos2 q=(A*t)2

Sin2 q=(B*t)2

-p=C*t

Cos2 q+sin2 q=t2 (A2 +B2 ), t2 =1/A2 +B2 , t=±sqrt(1/ A2 +B2 ). Sign t= – sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.

Аtх+Bty+Ct=0, t-нормирующий множитель.

7. Система: x=et+x1 и y=mt+y1

НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой.

1. xcosq+ysinq-P=0

Q – угол между вектором ОР и положительным напр. оси ОХ.

Задача: записать ур-е прямой, если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq, sinq). Пусть М(x, y) – произв. точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал. произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части.

Задача: прямая задана общим ур-ем. Перейти к норм. виду.

Ах+By+C=0

Xcosq+ysinq-P=0

Т. к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos2 q=(A*t)2

Sin2 q=(B*t)2

-p=C*t

Cos2 q+sin2 q=t2 (A2 +B2 ), t2 =1/A2 +B2 , t=±sqrt(1/ A2 +B2 ). Sign t= – sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.

Аtх+Bty+Ct=0, t-нормирующий множитель.

2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки от прямой. б=d, если нач. коорд. и точка по разные стороны; = – d, если нач. коорд. и точка по одну сторону.

Теорема: Пусть задано нормальное уравнение прямой xcosq+ysinq-P=0 и М1 (x1 ;y1 ), тогда отклонение точки М1 = x1 cosq+y1 sinq-P=0

Задача: найти расстояние от точки М0 (x0 ;y0 ) до прямой Ах+By+C=0. Т. к. d=|б|, то формула расстояний принимает вид d=| x0 cosq+y0 sinq-P|. d=|Ах0 +By0 +C|/sqrt(A2 +B2 )

ГИПЕРБОЛА.

Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная

Каноническое уравнение:

Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом расстоянии от начала координат. |F1 F2 |=2c, М – произвольная точка гиперболы. r1 , r2 – расстояния от М до фокусов; |r2 – r1 |=2a; a<c;

,

X2 c2 -2a2 xc+a2 =a2 (x2 -2xc+c2 +y2 )

X2 (c2 – a2 )-a2 y2 =a2 (c2 – a2 )

C2 – a2 =b2

X2 b2 – a2 y2 =a2 b2

– каноническое ур-е гиперболы

ПАРАБОЛА.

Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой.

Каноническое уравнение:

Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат.

|DF|=p, М – произвольная точка параболы; К – точка на директрисе; МF=r; MK=d;

R=sqrt((x-p/2)2 +y2 ); d=p/2+x

Приравниваем и получаем:

Y2 =2px – каноническое уравнение параболы

ЭКСЦЕНТРИСИТЕТ И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ.

1. Определение: эксцентриситет – величина равная отношению с к а.

Е=с/а

Е эллипсв <1 (т. к. а>c)

Е гиперболы >1 (т. к. с>a)

Определение: окружность – эллипс у которого а=b, с=0, е=0.

Выразим эксцентриситеты через а и b:

Е эллипса является мерой его “вытянутости”

Е гиперболы характеризует угол раствора между асимптотами

2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскости a перпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е<a)

D1 : x= – a/e

D2 : x= a/e

Р=а(1-е2 )/е – для эллипса

Р=а(е2 -1)/е – для гиперболы

ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы).

Доказательство: для эллипса.

R1 /d1 =e

X£|a|, xe+a>0

R1 =xe+a

D1 – расстояние от М(x, y) до прямой D1

Xcos180+ysin180-p=0

X=-p

X=-a/e

Бм =-x-a/e

D1 =-бм (минус, т. к. прямая и точка по одну стороно о начала коорд.)

Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до соответствующей директрисы есть величина постоянная и представляет собой эллипс, если <1, гиперболу, если >1, параболу, если =1.

ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Пусть задан эллипс, парабола или правая ветвь гиперболы.

Пусть задан фокус этих кривых. Поместим полюс полярной системы в фокус кривой, а полярную ось совместим с осью симметрии, на которой находится фокус.

R= r

D=p+rcosj

E=r/p+rcosj

– полярное уравнение эллипса, параболы и правой ветви гиперболы.

КАСАТЕЛЬНАЯ К КРИВОЙ 2-ГО ПОРЯДКА.

Пусть задан эллипс в каноническом виде. Найдем уравнение касательной к нему, проходящей через М0 (x0 ;y0 ) – точка касания, она принадлежит эллипсу значит справедливо:

У-у0 =y'(x0 )(x-x0 )

Рассмотрим касательную к кривой следовательно

Ya2 y0 – a2 y02 +b2 x0 x-b2 x02 =0

– уравнение касательной к эллипсу.

– уравнение касательной к гиперболе.

– уравнение касательной к параболе.

ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ НА ПЛОСКОСТИ.

Преобразование на плоскости есть применение преобразований параллельного переноса и поворота.

Пусть две прямоугольные системы координат имеют общее начало. Рассмотрим все возможные скалярные произведения базисных векторов двумя способами:

(е1 ;е1 ‘)=cos u

(е1 ;е2 ‘)=cos (90+u)= – sin u

(е2 ;е1 ‘)=cos (90-u)=sin u

(е2 ;е2 ‘)=cos u

Базис рассматривается ортонормированный:

(е1 ;е1 ‘)=(е1 , a11 е1 +a12 е2 )= a11

(е1 ;е2 ‘)= (е1 , a21 е1 +a22 е2 )= a21

(е2 ;е1 ‘)= a12

(е2 ;е2 ‘)= a22

Приравниваем:

A11 =cos u

A21 = – sin u

A12 =sin u

A22 =cos u

Получаем:

X=a+x’cos u – y’sin u

Y=b+x’sin u – y’cos u – формулы поворота системы координат на угол u.

————

X=a+x’

Y=b+y’ – формулы параллельного переноса

ИНВАРИАНТЫ УРАВНЕНИЯ ЛИНИЙ 2-ГО ПОРЯДКА.

Определение: Инвариантой ур-я (1) линии второго порядка относительно преобразования системы координат, называется функция зависящая от коэффициентов ур-я (1) и не меняющая своего значения при преобразовании системы координат.

Теорема: инвариантами уравнения (1) линии второго порядка относительно преобразования системы координат являются следующие величины: I1 ; I2 ; I3

Вывод: при преобразовании системы координат 3 величины остаются неизменными, поэтому они характеризуют линию.

Определение:

I2 >0 – элиптический тип

I2 <0 – гиперболический тип

I2 =0 – параболический тип

ЦЕНТР ЛИНИИ 2-ГО ПОРЯДКА.

Пусть задана на плоскости линия уравнением (1).

Параллельный перенос:

Параллельно перенесем систему XOY на вектор OO’ т. о. что бы в системе X’O’Y’ коэфф. при x’ и y’ преобразованного уравнения кривой оказались равными нулю. После этого:

A11 x’2 +2a12 x’y’+a22 y’2 +a’33 =0 (2)

Точка О’ находится из условия: a13 ‘=0 и a23 ‘=0.

Получается система a11 x0 +a12 y0 +a13 =0 и a12 x0 +a22 y0 +a23 =0

Покажем, что новое начало координат (если система разрешима) является центром симметрии кривой: f(x’;y’)=0, f(-x’;-y’)= f(x’;y’)

Но точка О’ существует если знаменатели у x0 и y0 отличны от нуля.

Точка O’ – единственная точка.

Центр симметрии кривой существует если I2 ¹0 т. е. центр симметрии имеют линии элиптического и гиперболического типа

Поворот:

Пусть система XOY повернута на угол u. В новой системе координат уравнение не содержит члена с x’y’ т. е. мы делаем коэфф. а12 =0. a12 ‘= -0,5(a11 – a22 )sin2u+a12 cos2u=0 (разделим на sin2u), получим:

, после такого преобразования уравнение принимает вид

A11 ‘x’2 +a22 ‘y’2 +2a13 ‘x’+2a23 ‘y’+a33 ‘=0 (3)

ТЕОРЕМА О ЛИНИЯХ ЭЛИПТИЧЕСКОГО ТИПА.

Теорема: Пусть задана линия элиптического типа т. е. I2 >0 и пусть I1 >0следовательно уравнение (1) определяет: 1. I3 <0 – эллипс; 2. I3 =0 – точка; 3. I3 >0 – ур-е (1) не определяет. Если I3 =0 говорят, что эллипс вырождается в точку. Если I3 >0 говорят, что задается мнимый эллипс. Пусть после ПП и поворота ур-е (1) принимает вид (*).

Доказательство:

1. пусть I2 >0, I1 >0, I3 <0, тогда

А11 ”x”2 +a22 ” y”2 = – I3 /I2

I2 =a11 ”a22 ” > 0

I1 = a11 ”+a22 ” > 0

A11 ” > 0; a22 ” > 0

Итак, под корнями стоят положительные числа, следовательно, уравнение эллипса.

2. I3 >0 в данном случае под корнем стоят отрицательные числа, следовательно уравнение не определяет действительного геометрического образа.

3. I3 =0 в данном случае т(0,0) – случай вырождения эллипса.

ТЕОРЕМА О ЛИНИЯХ ГИПЕРБОЛИЧЕСКОГО ТИПА.

Теорема: Пусть уравнение (1) определяет линию гиперболического типа. Т. е. I2 <0, I3 ¹0 – ур-е (1) определяет гиперболу; I3 =0 – пару пересекающихся прямых.

Доказательство: I2 <0; I2 = a11 ”a22 ” < 0. Пусть a11 ”>0; a22 ”<0

Пусть I3 >0

В данном случае мы имеем гиперболу с действительной осью ОХ.

Пусть I3 <0

-(-а11 ”)x”2 +a22 ” y”2 = – I3 /I2

В этом случае мы имеем гиперболу с действительной осью ОY

Пусть I3 =0

А11 ”x”2 -(-a22 ”)y”2 =0

АСИМПТОТИЧЕСКИЕ НАПРАВЛЕНИЯ КРИВЫХ 2-ГО ПОРЯДКА.

Пусть крива второго порядка задана уравнением (1). Рассмотрим квадратную часть этого уравнения: u(x, y)= a11 x2 +2a12 xy+a22 y2

Определение: ненулевой вектор (a, b) координаты которого обращают в ноль квадратичную часть называется вектором асимптотического направления заданной кривой.

(a, b) – вектор асимптотического направления.

A11 a2 +2a12 ab+a22 b2 =0 (*)

Рассмотрим (a’, b’) параллельный (a, b): следовательно . Дробь a/b характеризует вектор асимптотического направления.

Задача: выяснить какие асимптотические направления имеют кривые 2-го порядка.

Решение: положим, что b¹0 и поделим на b2 , получим: a11 (a/b)2 +2a12 a/b+a22 =0 из этого квадратного уравнения найдем a/b.

Т. к. у линий гиперболического и параболического типов I2 £0, то они имеют асимптотические направления. Т. к. у эллипса I2 >0 следовательно таких у него нет (говорят он имеет мнимые асимптотические направления).

Найдем асимптотические направления у гиперболы:

(a, b)1 =(a, b)

(a, b)2 =(-a, b)

Векторы асимптотического направления являются направляющими векторами для асимптот.

Итак: гипербола имеет два асимптотических направления, которые определяются асимптотами гиперболы.

Найдем асимптотические направления у параболы:

Y2 =2px

Y2 -2px=0

U(x, y)= y2 +0, y=0

(a, b)=(0,0)

Итак: вектор асимптотического направления параболы лежит на оси симметрии параболы, т. е. прямая асимптотического направления пересекает параболу в одной точке, след. асимптотой не является. Парабола имеет одно асимптотическое направление, но асимптот не имеет.

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПЛОСКОСТИ.

Пусть задано трехмерное пространство.

Теорема: Плоскость в афинной системе координат задается уравнением первой степени от трех переменных: Ax+By+Cz+D=0, где A, B, C¹0 одновреенно. Справедлива и обратная теорема.

Теорема: Вектор n(A, B, C) ортоганален плоскости, задаваемой общим уравнением.

Вектор n – нормальный вектор плоскости.

2. Уравнение плоскости в отрезках:

3. Уравнение плоскости, определенной нормальным вектором и точкой.

Пусть n(A, B, C) и М(x0 ;y0 ;z0 ). Запишем ур-е пл-ти:

Ax+By+Cz+D=0

Ax0 +By0 +Cz0 =-D

A(x-x0 )+B(y-y0 )+C(z-z0 )=0

5. Уравнение плоскости ч/з 3 точки.

Пусть известны три точки не принадл. одной прямой.

М1 (x1 ;y1 ;z1 ); М2 (x2 ;y2 ;z2 ); М3 (x3 ;y3 ;z3 )

Пусть М(x;y;z) – произвольная точка плоскости. Т. к. точки принадл. одной плоскости то векторы компланарны.

М1 Мx-x1 y-y1 z-z1

М1 М2 x2 – x1 y2 – y1 z2 – z1 =0

М1 М3 x3 – x1 y3 – y1 z3 – z1

6. Параметрическое ур-е плоскости.

Пусть плоскость определена точкой и парой некомпланарных векторов. V(V1 ;V2 ;V3 ); U(U1 ;U2 ;U3 ); M0 (x0 ;y0 ;z0 ), тогда плостость имеет вид: система: x=x0 +V1 t+U1 s и y=y0 +V2 t+U2 s и z=z0 +V3 t+U3 s

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ.

Ax+By+Cz+D=0; M0 (x0 ;y0 ;z0 )

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ.

Угол между плоскостями: пусть заданы две плоскости: A1 x+B1 y+C1 z+D1 =0; A2 x+B2 y+C2 z+D2 =0, поэтому n1 (A1 ;B1 ;C1 ); n2 (A2 ;B2 ;C2 ). Отыскание угла между плоскостями сводится к отысканию его между нормальными векторами.


Аналитическая геометрия