Биография Пифагора

Биография Пифагора

Пифагор Самосский (ок. 580 – ок. 500 до н. э.) древнегреческий математик и философ-идеалист. Родился на острове Самос. Получил хорошее образование. По преданию Пифагор, чтобы ознакомиться с мудростью восточных ученых, выехал в Египет и как будто прожил там 22 года. Хорошо овладев всеми науками египтян, в том числе и математикой, он переехал в Вавилон, где прожил 12 лет и ознакомился с научными знаниями вавилонских жрецов. Предания приписывают Пифагору посещение и Индии. Это очень вероятно, так как Иония и Индия тогда имели торговые связи. Возвратившись на родину (ок. 530 г. до н. э.), Пифагор попытался организовать свою философскую школу. Однако по неизвестным причинам он вскоре оставляет Самос и селитсЯ в Кротоне (греческая колония на севере Италии). Здесь Пифагору удалось организовать свою школу, которая действовала почти тридцать лет. Школа Пифагора, или, как ее еще называют, пифагорейский союз, была одновременно и философской школой, и политической партией, и религиозным братством. Статут пифагорейского союза был очень суровым. Каждый, кто вступал в него, отказывался от личной собственности в пользу союза, обязывался не проливать крови, не употреблять мясной пищи, беречь тайну учения своего учителя. Членам школы запрещалось обучать других за вознаграждение. По своим философским взглядам Пифагор был идеалистом, защитником интересов рабовладельческой аристократии. Возможно, в этом и заключалась причина его отъезда из Самоса, так как в Ионии очень большое влияние имели сторонники демократических взглядов. В общественных вопросах под “порядком” пифагорейцы понимали господство аристократов. Древнегреческую демократию они осуждали. Пифагорейская философия была примитивной попыткой обосновать господство рабовладельческой аристократии. В конце V в. до н. э. в Греции и ее колониях прокатилась волна демократического движения. Победила демократия В Кротоне. Пифагор вместе с учениками оставляет Кротон и уезжаетв Тарент, а затем в Метапонт. Прибытие пифагорейцев в Метапонт совпало со вспышкой там народного восстания. В одной из ночных стычек погиб почти девяностолетний Пифагор. Его школа прекратила свое существование. Ученики Пифагора, спасаясь от преследований, расселились по всей Греции и ее колониям. Добывая себе средства к существованию, они организовывали школы, в которых преподавали главным образом арифметику и геометрию. Сведения об их достижениях содержатся в сочинениях позднейших ученых – Платона, Аристотеля и др.

Открытие того факта, что между стороной и диагональю квадрата не существует общей меры, было самой большой заслугой пифагорейцев. Этот факт вызвал первый кризис в истории математики. Пифагорейское учение о целочисленной основе всего существующего больше нельзя было признавать истинным. Поэтому пифагорейцы пытались сохранить свое открытие в тайне и создали легенду о гибели Гиппаса Мессопотамского, который осмелился разгласить открытие. Пифагору приписывают еще ряд важных в то время открытий, а именно: теорему о сумме внутренних углов треугольника; задачу о делении плоскости на правильные многоугольники (треугольники, квадраты и шестиугольники). Есть сведения, что Пифагор построил “космические” фигуры, т. е. пять правильных многогранников. Но вероятнее, что он знал только три простейших правильных многогранника: куб, четырехгранник, восьмигранник. Школа Пифагора много сделала, чтобы придать геометрии характер науки. Основной особенностью метода Пифагора было объединение геометрии с арифметикой.

Пифагор много занимался пропорциями и прогрессиями и, вероятно подобием фигур, так как ему приписывают решение задачи: “По данным двум фигурам построить третью, равновеликую одной из данных и подобную второй”. Пифагор и его ученики ввели понятие о многоугольных, дружественных, совершенных числах и изучали их свойства. Арифметика как практика вычислений не интересовала Пифагора, и он с гордостью заявил, что “поставил арифметику выше интересов торговца”. Пифагор одним из первых считал, что Земля имеет форму шара и является центром Вселенной, что Солнце, Луна и планеты имеют собственное движение, отличное от суточного движения неподвижных звезд. Учение пифагорейцев о движении Земли Николай Коперник воспринял как предысторию своего гелиоцентрического учения. Недаром церковь объявила систему Коперника “ложным пифагорейским учением”.

Мысли и афоризмы

    На поле жизни, подобно сеятелю, ходи ровным и постоянным шагом. Истинное отечество там, где есть благие нравы. Не будь членом ученого общества: самые мудрые, составляя общество, делаются простолюдинами. Почитай священными числа, вес и меру, как чад изящного равенства. Измеряй свои желания, взвешивай свои мысли, исчисляй свои слова. Ничему не удивляйся: удивление произвело богов. Если спросят: что есть древнее богов? – ответствуй: страх и надежда.

Правда о Пифагоре

Самое большее, что известно сейчас народонаселению об этом уважаеом древнем греке, укладывается в одну фразу: “Пифагоровы штаны на все стороны равны”. Авторов этой дразнилки явно отделяют от Пифагора века, иначе бы они дразниться не посмели. Потому что Пифагор – вовсе не квадрат гипотенузы, равный сумме квадратов катетов. Это знаменитый философ.

Пифагор жил в шестом веке до нашей эры, имел красивую внешность, носил длинную бороду, а на голове золотую диадему. Пифагор – это не имя, а прозвище, которое философ получил за то, что всегда говорил верно и убедительно, как греческий оракул. (Пифагор – “убеждающий речью”.) Своими речами приобрел 2000 учеников, которые вместе со своими семьями образовали школу-государство, где действовали законы и правила Пифагора.

Он первый дал название своему роду деятельности. Слово “философ”, как и слово “космос” достались нам от Пифагора. В его философии много космического. Он утверждал, что для понимания Бога, человека и природы надо изучать алгебру с геометрией, музыку и астрономию. Кстати, именно пифагорейская система знаний, и называется по-гречески “математикой”. Что касается пресловутого треугольника с его гипотенузой и катетами, то это, согласно великому греку, больше, чем геометрическая фигура. Это “ключ” ко всем зашифрованным явлениям нашей жизни. Все в природе, говорил Пифагор, разделено на три части. Поэтому прежде чем решать любую проблему, ее надо представить в виде треугольной диаграммы. “Узрите треугольник – и задача на две трети решена”.

Пифагор не оставил после себя собрания сочинений, он держал свое учение в тайне и передавал ученикам устно. В результате тайна умерла вместе с ними. Кое-какая информация все же просочилась в века, но теперь уже трудно сказать, сколько в ней истинного, а сколько ложного. Даже с пифагоровой теоремой не все бесспорно. Некоторые историки сомневаются в авторстве Пифагора, утверждая, что ее вовсю использовали в хозяйстве самые разные древние народы.

Что уж говорить об отдельных фактах биографии великого математика! Рассказывали, например, что он мог заставить птиц изменить направление полета. Он разговаривал с медведицей, и та перестала нападать на людей, он беседовал с быком, и тот под влиянием беседы перестал трогать бобы и поселился при храме. Однажды, переходя вброд реку, Пифагор вознес молитву духу реки, и из воды послышался голос: “Приветствую тебя, Пифагор!” Говорили также, что он повелевал духами: посылал их в воду и, глядя на рябь, делал предсказания.

Влияние его на людей было так велико, что похвала из уст Пифагора переполняла его учеников восторгом. Однажды ему случилось рассердиться на ученика, и тот покончил с собой. Потрясенный философ никогда больше ни с кем не говорил раздраженно.

Он будто бы умудрялся исцелять людей, напевая им стихи из “Илиады” и “Одиссеи” Гомера. Он знал лекарственные свойства огромного количества растений.

В последующие столетия фигура Пифагора была окружена множеством легенд: его считали перевоплощенным богом Аполлоном, полагали, что у него было золотое бедро, и он был способен раздваиваться и запросто в одно и то же время преподавать в двух разных местах. Отцы раннехристианской церкви отвели Пифагору почетное место между Моисеем и Платоном. Хотя и не очень понятно, за что: Пифагор прославился своим учением о космической гармонии и переселении душ, что не очень-то вписывается в христианские догматы. К тому же, ученый муж не чурался и колдовства, даже в XVI в. были нередки ссылки на авторитет Пифагора в вопросах не только науки, но и магии. Как в России все дворники – философы, так и в Древней Греции все философы были математиками. Пифагор в этом отношении не был исключением.

Пифагор и пифагорейцы

Но Пифагор был не только ученым. “По совместительству” он являлся активным проповедником собственных учений. Причем проповедником весьма преуспевшим: на греческом острове Кротоне, на юге Италии, где Пифагор, изгнанный с Самоса, проповедовал, он пользовался популярностью. Его последователи, увлеченные идеями учителя, стренько сообразили религиозный орден. Притом орден настолько многочисленный и мощный, что он сумел фактически прийти к власти в Кротоне. Во времена античности Пифагор более всего был известен и популярен именно как проповедник. А проповедовал он собственное учение, основанное на понятии реинкарнации (переселении душ), то есть, способности души переживать смерть бренного тела, а это значит, что душа бессмертна. Поскольку в новом воплощении душа может переселяться многократно, в том числе и в тела животных, Пифагор и его последователи были категорически против умерщвления животных, употребления в пищу их мяса и даже категорически призывали сограждан не иметь дело с теми, кто забивает животных или разделывает их туши. Пифагор говорил, что поедание мяса затемняет умственные способности. Вообще он не отказывал себе полностью в этом, но когда удалялся в храм Бога для медитации и молитвы, он брал с собой заранее приготовленные пищу и питье. Пищей его были мак и кунжут, шкурки морского лука, цветки нарцисса, листья мальвы, ячмень и горох, дикий мед…

Такое, казалось бы, скудное питание не помешало философу прожить долгую жизнь. Ученые считают, что он вычислял, проповедовал и философствовал около ста лет. Но сам он постоянно заявлял, что прожил много жизней…

Он был первым человеком, который назвал себя философом. До него умные люди называли себя гордо и несколько высокомерно – мудрецами, что означало – человек, который знает. Пифагор же назвал себя философом – тем, кто пытается найти, выяснить.

По понятиям Пифагора, кровопролитие приравнивалось, ни много ни мало, к первородному греху, за который, как известно, бессмертная душа изгоняется в бренный мир, где ей суждено блуждать, перепархивая из одного тела в другое. Душе такие бесконечные перевоплощения не по душе, она рвется на свободу, в небесные сферы, но по невежеству неизменно повторяет греховное деяние.

Если верить Пифагору, освободить душу от бесконечных перевоплощений может очищение. Простейшее очищение заключается в воздержании от излишеств, от пьянства или от употребления в пищу бобов. Так же строго должны соблюдаться и правила поведения: почитание старших, законопослушание. Во взаимоотношениях пифагорейцы во главу угла ставили дружбу, все имущество друзей должно быть общим. Немногим избранным, как сегодня говорят, наиболее продвинутым, становилась доступной высшая форма очищения – философия, слово это, как мы уже упоминали, а до нас утверждал Цицерон, было впервые употреблено именно Пифагором, называвшим себя не мудрецом, а любителем мудрости. Математика – одна из составных частей религии пифагорейцев, которые учили, что Бог положил число в основу мирового порядка.

Пифагорейцы пытались применять математические открытия Пифагора к умозрительным физическим построениям, что приводило к любопытным результатам. Они полагали, что любая планета, обращаясь вокруг Земли, проходя при этом сквозь чистый верхний воздух, или “эфир”, издает тон определенной высоты. Высота звука меняется в зависимости от скорости движения планеты, скорость же этого движения зависит от расстояния до Земли. Сливаясь, небесные звуки образуют то, что мы называем “гармонией сфер”, или “музыкой сфер”, ссылками на музыку сфер литература усыпана, как императорская корона бриллиантами. Ранние пифагорейцы были убеждены, что Земля плоская и находится в центре космоса. Позднее они “поумнели” и стали считать, что Земля имеет сферическую форму и вместе с другими планетами, включая и Солнце, обращается вокруг центра космоса, так называемого “очага”.

Недоброжелателям Пифагора, обеспокоенным растущей популярностью его учений, все же удалось изгнать его в Метапонт, где он и умер, как теперь говорят, от разрыва сердца, скорбя о тщетности своих усилий по просвещению и бесплодности служения человечеству, так ему казалось. Орден же правил в Кротоне еще почти столетие, пока не был разгромлен.

Несправедливо думать, что пифагорейцы оставили после себя только заблуждения. Они совершили массу открытий в математике и геометрии. Многие их открытия использовал в “Началах” Эвклид. Пифагорейские идеи проникли в Афины, они были приняты Сократом, позже переросли в мощное идейное движение, возглавленное великим Платоном и его учеником Аристотелем.

Но вернемся к математике. Пифагорейцы были увлечены построением правильных геометрических фигур с помощью циркуля и линейки. Увлеченные этим “строительством” они выстроили фигуры вплоть до правильного пятиугольника и озадачились тем, как с помощью все тех же циркуля и линейки построить следующую правильную фигуру – семиугольник? Надо сразу же сказать, что это им не удалось.

Но они не только сами озадачились, но и озадачили все разумное человечество, которое с циркулем и линейкой в руках, наморщив лбы, ринулось строить правильные семиугольники.

Не тут-то было! Эта задачка пифагорейцев оставалась неразрешимой более двух тысячелетий! Решил ее только в 1796 г. 19-летний(!) немецкий юноша Карл Фридрих Гаусс (1777 – 1855), прозванный позже королем математиков.

“Построил” семиугольник юный гений случайно, занимаясь совсем другими вычислениями. Гаусс изложил теорию уравнений деления круга Хn – 1 = 0, которая во многом была прообразом блистательной теории другого девятнадцатилетнего гения – Галуа. Помимо общих методов решения этих уравнений, Гаусс установил связь между уравнениями и построением правильных многоугольников. Он нашел все те значения n, для которых правильный n-угольник можно построить при помощи циркуля и линейки.

Со времени возникновения задачи прошло более двух тысяч лет… Вот сколько терпения и времени требуется иногда на решение!

История теоремы

Карикатуры

История теоремы

Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: “Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4”. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или “натягиватели веревок”, строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод: “Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку.”

Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э.

В первом русском переводе евклидовых “Начал”, сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: “В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол”.

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих “Начал”. С другой стороны, Прокл утверждает, что доказательство в “Началах” принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Рассказывают, что в честь этого открытия Пифагор принес в жертву 100 быков.

Карикатуры

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum – ослиный мост, или elefuga – бегство “убогих”, так как некоторые “убогие” ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому “ослами”,были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также “ветряной мельницей”, составляли стихи вроде “Пифагоровы штаны на все стороны равны”, рисовали карикатуры.

Теорема Пифагора-одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни смотри на прямоугольный треугольник, никак не увидишь, что между его сторонами есть простое соотношение: c2 =a2 +b2 .

Наверх

Доказательство №1 (простейшее)

Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.

Простейшее доказательство теоремы получается в случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема.

В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для ΔABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, – по два. Теорема доказана.

Доказательство №2

Пусть Т – прямоугольный треугольник с катетами а, b и гипотенузой с (рис. а) . Докажем, что с2 =а2 +Ь2 .

Построим квадрат Q со стороной а+Ь (рис. б) .На сторонах квадрата Q возьмем точки А, В, С, D так, чтобы отрезки АВ, ВС, CD, DA отсекали от квадрата Q прямоугольные треугольники Т1 , Т2 , Т3 , Т4 с катетами а и b. Четырехугольник ABCD обозначим буквой Р. Покажем, что Р – квадрат со стороной с.

Все треугольники Т1 , Т2 , Т3 , Т4 равны треугольнику Т (по двум катетам). Поэтому их гипотенузы равны гипотенузе треугольника Т, т. е. отрезку с. Докажем, что все углы этого четырехугольника прямые.

Пусть a и b – величины острых углов треугольника Т. Тогда, как вам известно, a+b = 90° . Угол при вершине А четырехугольника Р вместе с углами, равными a и b, составляет развернутый угол. Поэтому a+b =180° . И так как a+b = 90° , то g=90° . Точно так же доказывается, что и остальные углы четырехугольника Р прямые. Следовательно, четырехугольник Р – квадрат со стороной с.

Квадрат Q со стороной а+Ь слагается из квадрата Р со стороной с и четырех треугольников, равных треугольнику Т. Поэтому для их площадей выполняется равенство S(Q)=S(P)+4S(T) .

Так как S(Q)=(a+b)2 ; S(P)=c2 и S(T)=½a*b, то, подставляя эти выражения в S(Q)=S(P)+4S(T) , получаем равенство (a + b)2 = c2 + 4*½a*b. Поскольку (a+b)2 =a2 +b2 +2*a*b, то равенство (a+b)2 =c 2 +4*½a*b можно записать так: a2 +b2 +2*a*b=c2 +2*a*b.

Из равенства a2 +b2 +2*a*b=c2 +2*a*b следует, что с2 =а2 +Ь2 . ч. т. д.

Доказательство №3

Пусть ΔАВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту CD из вершины прямого угла С.

По определению косинуса угла(Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе)соsА=AD/AC=AC/AB. Отсюда AB*AD=AC2 . Аналогично соsВ=BD/BC=BC/AB. Отсюда AB*BD=ВС2 . Складывая полученные равенства почленно и замечая, чтоAD+DB=AB, получим: АС2 +ВС2 =АВ(AD + DB)=АВ2 . Теорема доказана.

Доказательство №4

Площадь прямоугольного треугольника:S=½*a*b или S=½(p*r) (для произвольного треугольника); p – полупериметр треугольника; r – радиус вписанной в него окружности. r = ½*(a + b – c) – радиус вписанной в любой треугольник окружности. ½*a*b = ½*p*r = ½(a + b + c)*½(a + b – c) ; a*b = (a + b + c)*½(a + b – c) ; a + b=x ; a*b = ½(x + c)*(x – c)*a*b = ½(x2 – c2 ) a*b = ½(a2 + 2*a*b + b2 – c2 ) a2 + b2 – c2 = 0 , значит a2 + b2 = c2

Доказательство №5

Дано:ΔАВС – прямоугольный треугольникAJ – высота, опущенная на гипотенузуBCED – квадрат на гипотенузеABFH и ACKJ – квадраты построенные на катетах. Доказать: Квадрат гипотенузы равен сумме квадратов катетов (Теорема Пифагора). Доказательство: 1. Докажем, что прямоугольник BJLD равновелик квадрату ABFH, ΔABD=ΔBFS (по двум сторонам и углу между ними BF=AB; BC=BD; угол FBS=ABD ).Но! SΔABC =½SBJLD, т. к. у ΔABC и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично SΔFBS =½SABFH (BF – общее основание, AB – общая высота). Отсюда, учитывая, что SΔABD = SΔFBS, имеем: SBJLD =SABFH. Аналогично, используя равенство треугольника ΔBCK и ΔACE, доказывается, что SJCEL =SACKG. Итак, SABFH +SACKJ =SBJLD + SBCED.

В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой. Рассмотрим несколько элементарных примеров таких задач, в которых при решении применяется теорема Пифагора.

Строительство Окно

В зданиях готического и ромaнского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его очень прост: Из рисунка легко найти центры шести дуг окружностей, радиусы которых равны ширине окна (b ) для наружных дуг и половине ширины (b/2 ), для внутренних дуг. Остается еще полная окружность, касающаяся четырех дуг. Так как она заключена между двумя концентрическими окружностями, то ее диаметр равен расстоянию между этими окружностями, т. е. b/2 и, следовательно, радиус равен b/4 . А тогда становится ясным и положение ее центра. В рассмотренном примере радиусы находились без всяких затруднений. В других аналогичных примерах могут потребоватися вычисления; покажем, как применяется в таких задачах теорема Пифагора.

В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4 . Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4 , а другой b/2-p.

По теореме Пифагора имеем: (b/4+p)=( b/4)+( b/4-p) или b/16+ b*p/2+p=b/16+b/4-b*p+p, откуда b*p/2=b/4-b*p. Разделив на b и приводя подобные члены, получим: (3/2)*p=b/4, p=b/6 .

Крыша

В доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м, и AB=BF. Решение: Треугольник ADC – равнобедренный AB=BC=4 м, BF=4 м Если предположить, что FD=1,5 м, тогда: А) Из треугольника DBC: DB=2,5м Б) Из треугольника ABF :

Молниеотвод

Молниеотвод защищает от молнии все предметы, расстояние до которых от его основания не превышает его удвоенной высоты. Определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2 ≥ a2 +b2 , значит h ≥ (a2 +b2 )½ . Ответ: h ≥ (a2 +b2 )½

Астрономия

На этом рисунке показаны точки A и B и путь светового луча от A к B и обратно. Путь луча показан изогнутой стрелкой для наглядности, на самом деле, световой луч – прямой.

Какой путь проходит луч? Поскольку свет идет туда и обратно одинаковый путь, спросим сразу: чему равна половина пути, который проходит луч? Если обозначить отрезок AB символом l, половину времени как t, а также обозначив скорость движения света буквой c, то наше уравнение примет вид

C * t = l

Очевидно? Это ведь произведение затраченного времени на скорость!

Теперь попробуем взглянуть на то же самое явление из другой системы отсчета, с другой точки зрения, например, из космического корабля, пролетающего мимо бегающего луча со скоростью v. Раньше мы поняли, что при таком наблюдении скорости всех тел изменятся, причем неподвижные тела станут двигаться со скоростью v в противоположную сторону. Предположим, что корабль движется влево. Тогда две точки, между которыми бегает зайчик, станут двигаться вправо с той же скоростью. Причем, в то время, пока зайчик пробегает свой путь, исходная точка A смещается и луч возвращается уже в новую точку C.

Вопрос: на сколько успеет сместится точка (чтобы превратиться в точку C), пока путешествует световой луч? Точнее, опять спросим о половине данного смещения! Если обозначить половину времени путешествия луча буквой t’ , а половину расстояния AC буквой d, то получим наше уравнение в виде:

V * t’ = d

Буквой v обозначена скорость движения космического корабля. Опять очевидно, не правда ли?

Другой вопрос: какой путь при этом пройдет луч света? (Точнее, чему равна половина этого пути? Чему равно расстояние до неизвестного объекта?)

Если обозначить половину длины пути света буквой s, то получим уравнение:

C * t’ = s

Здесь c – это скорость света, а t’ – это тоже самое время, которые мы рассматривали на формулы выше.

Теперь рассмотрим треугольник ABC. Это равнобедренный треугольник, высота которого равна l. Да-да, тому самому l, которое мы ввели при рассмотрении процесса с неподвижной точки зрения. Поскольку движение происходит перпендикулярно l, то оно не могло повлиять не нее.

Треугольник ABC составлен из двух половинок – одинаковы прямоугольных треуголников, гипотенузы которых AB и BC должны быть связаны с катетами по теореме Пифагора. Один из катетов – это d, которое мы рассчитали только что, а второй катет – это s, который проходит свет, и который мы тоже рассчитали. Получаем уравнение:

S2 = l2 + d2

Это ведь просто теорема Пифагора, верно?

В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку, это явилось следствием открытий итальянского астронома Скиапарелли (открыл на Марсе каналы которые долгое время считались исскуственными) и др. Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора.

Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Мобильная связь

В настоящее время на рынке мобильной связи идет большая конкуренция среди операторов. Чем надежнее связь, чем больше зона покрытия, тем больше потребителей у оператора. При строительстве вышки (антенны) часто приходится решать задачу: какую наибольшую высоту должна иметь антенна, чтобы передачу можно было принимать в определенном радиусе (например радиусе R=200 км?, если известно. что радиус Земли равен 6380 км.) Решение: Пусть AB= x, BC=R=200 км, OC= r =6380 км. OB = OA + AB OB = r + x Используя теорему Пифагора, получим ответ. Ответ: 2,3 км.

Вступление

Многие при имени Пифагор вспоминают его теорему. Но неужели мы можем встречать эту теорему только в геометрии? Нет, конечно, нет! Теорема Пифагора встречается в разных областях наук. Например: в физике, астрономии, архитектуре и в других. Но так же Пифагор и его теорема воспеты в литературе.

Существуют много легенд, мифов, рассказов, песен, притчей, небылиц, анекдотов, частушек об этой теореме. Ниже приводятся примеры каждого вида, перечисленного здесь…

Легенды и мифы


Биография Пифагора