Эколого-биохимические исследования в модельной водной экосистеме

И. К. Проскурина, К. Е. Гусева, А. Е. Агапова

Исследования влияния различных химических соединений на биологические молекулы, в том числе на ферменты, весьма актуальны в настоящее время, поскольку они дают возможность выявить новые тест-функции для мониторинга окружающей среды.

Большое количество работ посвящено изучению влияния соединений тяжелых металлов на живые организмы растительного и животного происхождения [1, 8, 9, 12]. В меньшей степени в литературе представлены данные о влиянии органических соединений [8]. Целью данной работы явилось исследование влияния фенола и N, N’-диметилмочевины на активность катала-зы элодеи канадской, содержащейся в модельном водоеме.

Каталаза (КФ 1.11.1.7) – весьма распространенный фермент, она находится почти во всех аэробно дышащих клетках и у некоторых факультативных анаэробов. Функция каталазы заключается в защите организма от активных кислородсодержащих радикалов и пероксида водорода [5,7]. Активность каталазы весьма различна не только в разных организмах одного и того же вида или разновидности, но и у одного и того же организма в различных его органах в зависимости от возраста или стадии развития, от физиологического состояния и от многих других причин. Исследования показали, что отклонения от среднестатистического значения в активности каталазы могут доходить до 250%. Эти данные показывают, с какой осторожностью надлежит относиться к выводам об активности каталазы в зависимости от вида и рода живого организма или от внешнего воздействия [7]. Вот почему исследования влияния каких-либо токсикантов на активность каталазы целесообразно проводить в модельной экосистеме, это позволит исключить влияние других факторов

На активность исследуемого фермента и перенести полученные результаты на естественные водоемы. Моделирование экологических процессов и проведение эколого-биохими-ческих исследований включает в себя разработку моделей для понимания, предсказания и оценки нынешних и вероятных будущих воздействий и реагирования экосистем на множество стрессов на разных уровнях. Модельная экосистема позволяет имитировать поведение системы или ее компонентов при заданных условиях, не прибегая к проведению эксперимента над всей системой и обеспечивая сохранение внешних условий, близких к естественным, а также позволяет формировать требуемые начальные и текущие условия эксперимента и эффективный контроль в течение заданного промежутка времени [3, 6, 13]. Созданная нами модель водной экосистемы включает элементы концептуальной и имитационных моделей. Имитационные модели – это уменьшенные копии отдельных подсистем; концептуальные модели представляют собой блоковые схемы воздействия тех или иных подсистем в пределах более широких систем. Каждая модель должна иметь постоянные факторы и ряд переменных. Для модели водной экосистемы такими переменными могут быть объем воды, концентрация кислорода, температура и рН воды, количество водных организмов, содержание химических соединений. Предпочтительно, чтобы модель включала 2 переменных фактора. Используемая в нашем эксперименте модель включает следующие факторы: а) постоянные – общий объем воды (9 л), прозрачность воды, количество и состав грунта (0,5 кг), температурный режим (18-19 °С), освещенность, количество растений;

Б) переменные – концентрация токсиканта – фенола или N, N’-диметил-мочевины, время воздействия токсиканта. Важной составляющей в работе с биологическими моделями является статистический метод обработки полученных данных, так как исследователь всегда имеет дело с конкретной особью, у которой видовые качества в какой-то мере маскируются индивидуальными особенностями, связанными с его функциональными свойствами, – это индивидуальные отклонения в ту или иную сторону от “видового усреднения”. Поэтому для исключения индивидуальных отклонений и выявления общих закономерностей все эксперименты были выполнены в 3-х биологических и 5-7 аналитических последовательностях.

Методы исследования

В качестве исходного материала для исследований использовался экстракт стеблей и листьев элодеи канадской, взятой из прудов Петропавловского парка г. Ярославля. Экстракт приготовляли путем гомогенизации 0,5 г листьев и стеблей элодеи с небольшим количеством кварца и дистиллированной воды. Затем полученную массу переносили в мерную колбу на 25 мл и доводили до метки дистиллированной водой. Экстракт немедленно фильтровали и использовали для исследований.

Активность каталазы определяли колориметрическим методом [4]. Принцип метода основан на способности перокси-да водорода образовывать с солями молибдена стойкий окрашенный комплекс. В опыте использовались холостая, контрольная и опытная пробы. В каждую пробу вносили 1 мл трис-HCl буфера рН=7,8, в холостую и опытные – по 2 мл пероксида водорода, а в контрольную – 2 мл дистиллированной воды; в контрольную и опытные пробы затем прибавляли по 0,1 мл экстракта элодеи канадской. Реакцию останавливали через 10 минут добавлением 1 мл 4%-ного раствора мо-либдата аммония во все пробирки, после этого в холостую пробу приливали 0,1 мл экстракта. Интенсивность окраски в каждой пробе измеряли на ФЭКе при длине волны 410 нм против контрольной пробы. Активность каталазы рассчитывали по формуле:

Е = (А хол – А оп)*V*t*K, где Е – активность каталазы (мкат/мл); Ахол и Аоп – экстинкция холостой и опытной проб;

V – (0,1 мл) объем вносимой пробы; t – время инкубации;

К – коэффициент миллимолярной экс-тинкции Н2О2 (22,2 * 103 мМ-1*см-1) В эксперименте использовались различные концентрации токсикантов: фенола -1, 5, 10, 20 ПДК – [1 ПДК = 0,001 мг/л]; N, N’- диметилмочевины – 1, 5, 10, 20 ПДК (по данным ПДК мочевины) – [1 ПДК = 0,001 мг/л]. Выбор концентрации токсикантов не был случайным. Онова-нием служили данные ГорСЭС 2001 г. по содержанию фенола в реке Волга (3 ПДК) и в реке Которосль (6 ПДК) в черте города.

Результаты исследований

Исследования проводились в период май-июнь и сентябрь-ноябрь 2000-2002 гг. Определение активности каталазы элодеи канадской в отсутствии токсиканта показало сезонные изменения: так, в летний период активность составляла 22200±890 мкат/мл., а в осенний – 33300±2000 мкат/мл., то есть осенью активность каталазы на 30% выше. Вероятно, повышение активности каталазы в осенний период связано с накоплением за период вегетации перекисных соединений.

До изучения влияния токсикантов на активность каталазы интересно было исследовать изменение активности фермента во времени при содержании элодеи канадской в искусственном водоеме. Измерение активности проводили в течение 20 суток через каждые 2-е суток. Эти эксперименты показали, что активность исследованного фермента не изменяется на протяжении восьми суток, а затем плавно начинает расти (рис. 1). На 15-е сутки наблюдается увеличение активности в 1, 25 раза по сравнению с первыми сутками. Поэтому исследование влияния токсикантов проводили в течение восьми суток с тем, чтобы исключить естественные временные изменения активности каталазы.

Рис. 1. Сезонные изменения активности каталазы элодеи канадской (при содержании в чистом модельном водоеме)

Исследование влияние фенола в разных концентрациях на активность каталазы элодеи канадской (табл.1) показало, что активность исследуемого фермента не изменяется при воздействии токсиканта в концентрации 1 ПДК, что и следовало ожидать, так как ПДК – это предельно допустимая концентрация вещества, не оказывающая какого-либо вредного воздействия на организм. При воздействии фенола в концентрации 5 ПДК происходит незначительное падение активности каталазы на 2-е (18%) и 5-е (5%) сутки и снижение активности фермента (более 35%) на 8-е сутки содержания растения в загрязненном фенолом водоеме.

Резкие колебания активности каталазы наблюдаются при воздействии фенола в концентрации 10 ПДК. По истечении 2-х суток воздействия фенола активность каталазы падает почти в 2,5 раза, на 5-е сутки, напротив, увеличивается в 2 раза по сравнению с контролем, а на 8-е сутки вновь падает ниже значения контрольной пробы. Исследование воздействия фенола в концентрации 20 ПДК показало, что активность каталазы сначала возрастает на 20%, а потом постепенно падает. Такие изменения активности каталазы еще раз подтверждают данные о сложности взаимодействия фенола с растениями [2]. Как было ранее установлено [10, 11], фе-нольные соединения реагируют с растениями быстро, однако они химически неустойчивы и разлагаются в водной среде путем прямого окисления или с участием фенолоксидаз растительного происхождения. Промежуточные продукты окисления фенолов – хиноны – имеют высокую реакционную способность и могут рассматриваться как вторичные токсины.

В нашем исследовании, вероятно, на 5-е сутки воздействия фенола в концентрации 10 ПДК происходит накопление пе-рекисных соединений, что приводит к увеличению активности каталазы, дальнейшее содержание элодеи в загрязненном водоеме ведет к истощению резервов растения, что приводит к его гибели на 20-е сутки.

Таблица 1

Активность каталазы элодеи канадской при воздействии фенола

Концентрация N, N’- диметилмо-чевиныАктивность каталазы (мкат/л) при воздействии фенола
Контроль2-е сутки5-е сутки8-е сутки
1ПДК22200±90022200±90022300+100022500±4000
5 ПДК22200±90018200±117021300±76014600±1300
10ПДК22200±9009800±43045730±90020400±900
20ПДК22200±90027000±117021000±70019500±440

Результаты исследования активности каталазы элодеи канадской в случае загрязнения модельного водоема N, N’- диметилмочевины в концентрации 1, 5, 20 ПДК представлены в табл. 2.

Таблица 2

Активность каталазы элодеи канадской при воздействии N, N’ – диметилмочевины

Концентрация N, N’- диметилмочевиныАктивность каталазы (мкат/мл)
Контроль2-е сутки5-е сутки8-е сутки
1ПДК33300±75033300±40032200±40033100±550
5 ПДК33300±75031100±140016400±120014700±900
Юпдк33300±75028100±120026600±150017300±1700
20ПДК33300±75025700±90022600±150011500±1200

Как видно из представленных данных, N, N’-диметилмочевина в концентрации 1 ПДК не оказывает влияния на активность исследуемого фермента (рис.2). При воздействии токсиканта в концентрации 5, 10 и 20 ПДК наблюдается понижение активности каталазы во времени. Такое падение активности фермента может быть вызвано двумя причинами: либо NN-диметилмочевина снижает синтез белка в элодее, либо продукты метаболизма токсиканта in vivo ингибируют каталазу.

Сравнивая результаты, полученные при загрязнении модельного водоема фенолом и N, N’-диметилмочевиной, можно констатировать, что выбранные токсиканты оказывают разное действие на активность каталазы элодеи канадской, что позволяет сделать заключение о разных механизмах воздействия выбранных токсикантов и их метаболитов на каталазу элодеи канадской.

Список литературы

1. Будников Г. К. Тяжелые металлы в экологическом мониторинге водных систем // СОЖ. 1998. №5. С. 238.

2. Ганочкин Л. Д., Плеханов С. Е., Баттах М., Максимов В. Н. Адаптационно-токсикологические аспекты комбинированного действия фенола, меди и кадмия на зеленые микроводоросли // Вестник Московского университета, сер. Биология. 1995. №3. С. 41.

3. Гурман В. И., Дыхта Д. И. Эколого-экономические системы: модели, информация. Новосибирск: Наука, 1987. С. 80-123.

4. Королюк М. А., Иванова Л. И., Майорова Н. О., Токарев В. Е. Метод определения активности каталазы // Лабораторное дело. 1988. №1. С. 16.

5. Краткая химическая энциклопедия. М.: Советская энциклопедия, 1963. С. 455-456.

6. Мизинцев В. П. Применение моделей и методов моделирования в дидактике. М.: Знание, 1977. С. 4-7,26-31.

7. Михлин Д. М. Биохимия клеточного дыхания. М.: АН СССР, 1960. С. 246-260.

8. Пурмаль А. П. Антропогенная токсикация планеты // СОЖ, 1998. №9. С. 39-52.

9. Ровинский Ф. Я. Методы анализа загрязнения окружающей среды: токсичные металлы и радионуклиды. М.: Атомиздат, 1978. С. 85-112.

10. Роговин В. В., Муштакова В. М., Фомина В. А. Действие некоторых ксенобиотиков на зависимый от пе-роксидазы иммунитет растений // Известия РАН. 1996. №5. С. 613.

11. Стом Д. И. Фитотоксичность и механизмы детоксикации фенолов водными растениями / Автореф. дисс. … д-ра хим. наук. Киев, 1982. С. 3-6, 13-28, 37-38.

12. Трахтенберг И. М. Тяжелые металлы во внешней среде. Минск: Наука и техника, 1994. 195 c.

13. Фиштейн Г. Н. Моделирование экосистем на основе одноклеточных организмов. М.: МГУ, 1983. С. 186-223.

14. Экологические исследования в управлении исследований и разработок агентства по охране окружающей среды США: обзор новых направлений // Проблемы окружающей среды и природных ресурсов. 2001. №12. С. 21-28.


Эколого-биохимические исследования в модельной водной экосистеме