Графическое решение уравнений

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н. э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в “Книге абака”, написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид, Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx, у = kx + m, у = x 2 , у = – x 2, в 8 классе – у = √ x, у = |x |, у = ax 2 + bx + c, у = k / x. В учебнике алгебры 9 класса я увидела еще не известные мне функции: у = x 3 , у = x 4 , у = x 2n, у = x – 2n, у = 3 √x, ( x – a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли еще функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задается уравнением у = kx + b, гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x, где k¹ 0. График этой функции называется гиперболой.

Функция ( x – a )2 + (у – b )2 = r 2 , где а, b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а, b ).

Квадратичная функция y = ax 2 + bx + c где а, b, с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 ( a – x ) = x 2 ( a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

Уравнение ( x 2 + y 2 )2 = a ( x 2 – y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x2 y2 – 2 a x)2 =4 a2 (x2 + y2 ) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4, у = 1/ x 2 .

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение “делим” на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f ( x ) , можно построить графики функций у = f ( x + m ) , у = f ( x )+ l и у = f ( x + m )+ l. Все эти графики получаются из графика функции у = f ( x ) с помощью преобразования параллельного переноса: на │ m │ единиц масштаба вправо или влево вдоль оси x и на │ l │ единиц масштаба вверх или вниз вдоль оси y.

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский, живший в 3 веке до н. э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

– Находим координаты вершины параболы А (х0 ; у0 ): х0 =- b /2 a ;

– y0 =ахо2 +вх0 +с;

– Находим ось симметрии параболы (прямая х=х0 );

– Составляем таблицу значений для построения контрольных точек;

– Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьем уравнение на две функции: y = x 2 и y = 2 x + 3 . Корни уравнения – абсциссы точек пересечения параболы с прямой.

3. Разобьем уравнение на две функции: y = x 2 -3 и y =2 x. Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = ( x -1)2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x, получим x – 2 – 3/ x = 0 , разобьем данное уравнение на две функции: y = x – 2, y = 3/ x. Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x.

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = x 5 , y = 3 – 2 x.

Ответ: x = 1.

Пример 2. Решить уравнение 3 √ x = 10 – x.

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 √ x, y = 10 – x.

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c, у = k / x, у = √ x, у = |x |, у = x 3 , у = x 4 , у = 3 √x, я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y.

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближенными.

В 9 классе и в старших классах я буду еще знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А. Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А. Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А. Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г. И. История математики в школе. VII-VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul. biz/ru; wiki. iot. ru/images; berdsk. edu; pege 3-6.htm.


Графическое решение уравнений