Математика. Интегралы

1.

*1. Говорят, что функция f(x) не убывает (не возрастает) на (a, b), если для любых точек x1 <x2 из (a, b) справедливо неравенство f(x1 )£f(x2 ) (f(x1 )³f(x2 )).

*2. Говорят, что функция f(x) возрастает (убывает) на (a, b), если x1 <x2 из (a, b) справедливо неравенство f(x1 )<f(x2 ) (f(x1 )>f(x2 )). В этом случае функцию называют монотонной на (a, b).

Т1. Дифференцируемая на (a, b) функция f(x) тогда и только тогда не убывает (не возрастает) на (a, b), когда f¢(x)³0 (£0) при любом xÎ(a, b).

Док-во: 1) Достаточность. Пусть f¢(x)³0 (£0) всюду на (a, b). Рассмотрим любые x1 <x2 из (a, b). Функция f(x) дифференцируема (и непрерывна) на [x1 ,x2 ]. По теореме Лагранжа: f(x2 )-f(x1 )=(x2 – x1 )f¢(a), x1 <a<x2 . Т. к. (x2 – x1 )>0, f¢(a)³0 (£0), f(x2 )-f(x1 )³0 (£0), значит, f(x) не убывает (не возрастает) на (a, b). 2) Необходимость. Пусть, например, f(x) не убывает на (a, b), xÎ(a, b), x+DxÎ(a, b), Dx>0. Тогда (f(x+Dx)-f(x))/Dx³0. Переходя к приделу при Dx-0, получим f¢(x)³0. Теорема доказана.

Т2. Для возрастания (убывания) f(x) на (a, b) достаточно, чтобы f¢(x)>0 (<0) при любом xÎ(a, b). Док-во: Тоже что и в Т2.

Замечание1. Обратное к теореме 2 не имеет места, т. е. если f(x) возрастает (убывает) на (a, b), то не всегда f¢(x)>0 (<0) при любом xÎ(a, b).

*3. Прямая х=а называется вертикальной асимптотой графика функций y=f(x), если хотя бы одно из предельных значений или равно +¥ или -¥.

Замечание 2. Непрерывные функции вертикальных асимптот не имеют.

*4. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(-¥), если f(x)=kx+b+a(x), где

Т3. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(-¥), тогда и только тогда, когда существуют , , причем при x-+¥(-¥) наклонная асимптота называется правой (левой). Док-во: Предположим, что кривая y=f(x) имеет наклонную асимптоту y=kx+b при x-+¥, т. е. имеет место равенство f(x)=kx+b+a(x). Тогда . Переходя к пределу при x-+¥, получаем . Далее из f(x)=kx+b+a(x)-b=f(x)-kx-a(x). Переходя к пределу при x-+¥, получаем . Докажем обратное утверждение. Пусть пределы, указанные в теореме, существуют и конечны. Следовательно, f(x)-kx=b+a(x), где a(x)-0, при x-+¥(-¥). Отсюда и получаем представление f(x)=kx+b+a(x). Теорема доказана.

Замечание3. При k=0 прямая y=b называется горизонтальной асимптотой, причем при x-+¥(-¥) – правой (левой).

2.

*1. Точку х0 назовем стандартной для функции f(x), если f(x) дифференцируема в точке x0 и f¢(x0 )=0.

*2. Необходимое условие экстремума. Если функция y=f(x) имеет в точке x0 локальный экстремум, то либо x0 – стационарная точка, либо f не является дифференцируемой в точке x0 .

Замечание 1. Необходимое условие экстремума не является достаточным.

Т1. (Первое достаточное условие экстремума). Пусть y=f(x) дифференцируема в некоторой окрестности точки x0 , кроме, быть может, самой точки x0 , в которой она является непрерывной. Если при переходе x через x0 слева направо f¢(x) меняет знак с + на -, то точка x0 является точкой максимума, при перемене знака с – на + точка x0 является точкой минимума. Док-во: Пусть xÎ(a, b), x¹x0 , (a, b) – достаточно малая окрестность точки x0 . И пусть, например, производная меняет знак с + на -. Покажем что f(x0 )>f(x). По теореме Лагранжа (применительно к отрезку [x, x0 ] или [x0 ,x]) f(x)-f(x0 )=(x – x0 )f¢(a), где a лежит между x0 или x: а) x< x0 Þx – x0 <0, f¢(a)>0Þf(x)-f(x0 )<0Þf(x0 )>f(x); б) x>x0 Þx-x0 >0, f¢(a)<0Þf(x)-f(x0 )<0Þf(x0 )>f(x).

Замечание 2. Если f¢(x) не меняет знака при переходе через точку х0 , то х0 не является точкой экстремума.

Т2. (Второе достаточное условие экстремума). Пусть x0 – стационарная точка функции y=f(x), которая имеет в точке x0 вторую производную. Тогда: 1) f¢¢( x0 )>0Þf имеет в точке x0 локальный минимум. 2) f¢¢( x0 )<0Þf имеет в точке x0 локальный максимум.

3.

*1. График функции y=f(x) называется выпуклым вниз (или вогнутым вверх) в промежутке (a, b), если соответствующая дуга кривой расположена выше касательной в любой точке этой дуги.

*2. График функции y=f(x) называется выпуклым вверх (или вогнутым вниз) в промежутке (a, b), если соответствующая дуга кривой расположена ниже касательной в любой точке этой дуги.

Т1. Пусть y=f(x) имеет на (a, b) конечную 2-ю производную. Тогда: 1) f¢¢(x)>0, “xÎ(a, b)Þграфик f(x) имеет на (a, b) выпуклость, направленную вниз; 2) ) f¢¢(x)<0, “xÎ(a, b)Þграфик f(x) имеет на (a, b) выпуклость, направленную вверх

*3. Точка (c, f(с)) графика функций f(x) называется точкой перегиба, если на (a, c) и (c, b) кривая y=f(x) имеет разные направления выпуклости ((a, b) – достаточно малая окрестность точки c).

Т2. (Необходимое условие перегиба). Если кривая y=f(x) имеет перегиб в точке (c, f(c)) и функция y=f(x) имеет в точке c непрерывную вторую производную, то f¢¢(c)=0.

Замечание1. Необходимое условие перегиба не является достаточным.

Замечание2. В точке перегиба вторая производная может не существовать.

Т3. (Первое достаточное условие перегиба). Пусть y=f(x) имеет вторую производную на cÎ(a, b), f¢¢(c)=0. Если f¢¢(x) имеет на (a, c), (c, b) разные знаки, то (c, f(c)) – точка перегиба графика f(x).

Т4. (Второе условие перегиба). Если y=f(x) имеет в точке конечную третью производную и f¢¢(c)=0, а f¢¢¢(c)¹0, тогда (c, f(c)) – точка перегиба графика f(x).

4.

*1. Первообразная от функции f(x) в данном интервале называется функция F(x), производная которой равна данной функции: F¢(x)=f(x).

T1. Всякая непрерывная функция имеет бесчисленное множество первообразных, причем любые две из них отличаются друг от друга только постоянным слагаемым. Док-во: F(x) и Ф(х) – две первообразные от f(x), тождественно не равные между собой. Имеем F¢(x)=f(x), Ф¢(х)=f(x). Вычитая одно равенство из другого, получим [F(x)-Ф(х)]¢=0. Но если производная от некоторой функции (в нашем случае от F(x)-Ф(х)) тождественно равна нулю, то сама функция есть постоянная; ÞF(x)-Ф(х)=С.

*2. Неопределенным интегралом от данной функции f(x) называется множество всех его первообразных ,где F¢(x)=f(x).

5.

Свойства неопределенного интеграла:

Производная НИ =подынтегральной функции; дифференциал от НИ равен подынтегральному выражению: ; . Док-во: ; НИ от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого: . Док-во: Обозначим . На основании первого св-ва: , откуда , т. е. . НИ от суммы конечного числа функций равен сумме интегралов от слагаемых функций: , где u, v, …,w-функции независимой переменной х. Док-во: Постоянный множитель можно выносить за знак НИ:, где с – константа. Док-во .

Т2. (об инвариантности формул интегрирования): Пусть òf(x)dx=F(x)+C – какая-либо известная формула интегрирования и u=ф(х) – любая функция, имеющая непрерывную производную. Тогда òf(u)du=F(u)+C. Док-во: Из того, что òf(x)dx=F(x)+C, следует F¢(x)=f(x). Возьмем функцию F(u)=F[ф(x)]; для ее дифференциала, в силу теоремы об инвариантности вида первого дифференциала функции, имеем: dF(u)=F¢(u)du=f(u)du. Отсюда òf(u)du=òdF(u)=f(u)+C.

6.

Метод замены переменных.

1) Подведение под знак дифференциала. Т1. Пусть функция y=f(x) определена и дифференцируема, пусть также существует f(x)=f(j(t)) тогда если функция f(x) имеет первообразную то справедлива формула: -формула замены переменных. Док-во: пусть F(x) для функции f(x), т. е. F¢(x)=f(x). Найдем первообразную для f(j(t)), [F(j(t))]¢t =F¢(x)(j(t)) j¢(t)=F¢(x) j¢(t)=f(x) j¢(t). òf(x) j¢(t)dt=f(j(t))+C. F(j(t))+C=[F(x)+C]|x=j(t) =òf(x)dx|x=j(t) .

Замечание1. При интегрировании иногда целесообразно подбирать подстановку не в виде x=j(t), а в виде t=j(x).

2) Подведение под знак дифференциала. F(x)dx=g(j(x)) j¢(x)dx=g(u)du. òf(x)dx=òg(j(x)) j¢(x)dx=òg(u)du.

dx=d(x+b), где b=const; dx=1/ad(ax), a¹0; dx=1/ad(ax+b), a¹0; ф¢(х)dx=dф(x); xdx=1/2 d(x2 +b); sinxdx=d(-cosx); cosxdx=d(sinx);

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

7.

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

Интегрирование функций, содержащих квадратный трехчлен:

Первый интеграл табличного вида: òdu/uk :

Второй интеграл сводится к нахождению интеграла: где u=x+p/2, a=, q-p2 /4>0

– рекуррентная формула.

Интегрирование рациональных функций: R(x)=P(x)/Q(x), R(x)-рациональная функция, P(x) и Q(x)-многочлены. Дробь P(x)/Q(x) можно разложить в сумму простейших дробей, где Ai, Bi, Ci – постоянные, а именно: каждому множителю (x-a)k в представлении знаменателя Q(x) соответствует в разложении дроби P(x)/Q(x) на слагаемые сумма k простейших дробей типа а каждому множителю (x2 +px+q)t соответствует сумма t простейших дробей типа . Таким образом при разложении знаменателя Q(x) на множители имеет место разложение дроби P(x)/Q(x) на слагаемые.

Правила интегрирования рациональных дробей:

Если рац. дробь неправильная, то ее представляют в виде суммы многочлена и неправильной дроби. Разлагают знаменатель правильной дроби на множетели.

Правую рац. дробь разлагают на сумму простейших дробей. Этим самым интегрирование правильной рац. дроби сводят к интегрированию простейших дробей.

8.

Интегрирование тригонометрических функций:

I. 1 Интеграл вида:

2 R(sinx, cosx) – нечетная функция относительно sinx, то cosx=t.

3 R(sinx, cosx) – нечетная функция относительно cosx, то sinx=t.

4 R(sinx, cosx) – нечетная функция относительно sinx и cosx, то tgx=t.

II. 1

2 Оба показателя степени m и n – четные положительные числа: sinxcosx=1/2 sin2x; sin2 x=1/2(1-cos2x); cos2 x=1/2(1+cos2x).

III. òtgm xdx и òctgm xdx, где m-целое положительное число. tg2 x=sec2 x-1 или ctg2 x=cosec2 x -1.

IV. òtgm xsecn xdx и òctgm xcosecn xdx, где n – четное положительное число. sec2 x=1+tg2 x или cosec2 x=1+ctg2 x.

V. òsinmx*cosnxdx, òcosmx*cosnxdx, òsinmx*sinnxdx; sinacosb=1/2(sin(a+b)+sin(a-b)); cosacosb=1/2(cos(a+b)+cos(a-b)); sinasinb=1/2(cos(a-b)-cos(a+b));

9.

Интегрирование иррациональных функций:

I. 1 òR(x, , ,…)dx, k-общий знаменатель дробей m/n, r/s…. x=tk, dx=ktk-1 dt

2 òR(x,, …)dx, , x=, dx=

II. 1 Вынести 1/Öa или 1/Ö-a. И выделим полные квадраты.

2

3 Разбить на два интеграла.

4

III. 1

2

3

1)p-целое число x=tS, где s – наименьшее общее кратное знаменателей у дробей m и n. 2) (m+1)/n – целое число: a+bxn =tS ; 3) p+(m+1)/n-целое число: a-n +b=tS и где s – знаменатель дроби p.

10.

Определенный интеграл:

1) интервал [a, b], в котором задана функция f(x), разбивается на n частичных интервалов при помощи точек a=x0 <x1 <…<xn-1 <xn =b;

2) Значение функции f(xI ) в какой нибудь точке xi Î[xi – xi-1 ] умножается на длину этого интервала xi – xi-1 , т. е. составляется произведение f(xi )(xi – xi-1 );

3) , где xi – xi-1 =Dxi ;

I=– этот предел (если он существует) называется определенным интегралом, или интегралом от функции f(x) на интервале [a, b], обозначается

*1. Определенным интегралом называется предел интегральной суммы при стремлении к нулю длинны наибольшего частичного интеграла (в предположении, что предел существует).

Т1. (Необходимое условие существования интеграла): Если ОИ существует, т. е. функция f(x) интегрируема не [a, b], то f(x) ограничена на этом отрезке. Но этого не достаточно. Док-во: Функция Дирихле:


Математика. Интегралы