Модель производственной функции для сельскохозяйственной отрасли

ВВЕДЕНИЕ

Производственная функция занимает важное место в экономической теории как модель, непосредственно относящаяся не к процессу обмена, а к процессу производства, который связан с потреблением различных ресурсов (сырье, энергия, труд, оборудование и т. д.).

Построение производственных функции, то есть выявление фактических технологических взаимосвязей в производстве, является одной из важнейших эконометрических задач. Экономический анализ производства исследует отношение между затратами и выпуском. Это отношение, и определяет максимальный объем выпуска при определенных комбинациях факторов производства.

Исследование производственной функции применяется в различных областях знаний и для широкого типа данных. Функции могут относиться к технологическим процессам в промышленности или сельском хозяйстве. При работе с производственной функцией возникают различные проблемы: выбор надлежащих объясняющих переменных, подготовка соответствующих данных, выбор математической функции, статистическая оценка, интерпретация результатов. Рассмотрение двух факторов производства обосновано при анализе промышленного производства, как предприятия, отрасли, так и национального, мирового хозяйств. Особый интерес для исследования представляет сельское хозяйство.

Сельскохозяйственная отрасль на мой взгляд является одной из базовой отраслью развитого государства, которая занимается выращиванием различных зерновых культур (а Украина как известно является одним из основных экспортеров зерна, пшеницы и др. зерновых культур). В условиях НТП (научно-технического прогресса) роль сельского хозяйства возрастает в связи с развитием технологий выращивания, с развитием и совершенствованием сельскохозяйственной техники и ростом населения, все это обуславливает интенсивное производство и как следствие потребление продукции сельского хозяйства.

И именно поэтому, в этой курсовой работе я решил попытаться разработать модель производственной функции для сельскохозяйственной отрасли.

Для исследования были использованы данные по валовой стоимости продукции в сельском хозяйстве Украины за 20 лет (1986 – 2007) относительно рабочей силы (L) и капитала (K).

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Понятие производственной функции

Производственная функция – это функция, независимая переменная которой принимает значения объемов затрачиваемого или используемого ресурса (фактора производства), а зависимая переменная – значения объемов выпускаемой продукции.

(1)

В формуле (1) и – числовые величины, т. е. есть функция одной переменной . В связи с этим ПФ называется одно-ресурсной или однофакторной ПФ, ее область определения – множество неотрицательных действительных чисел (т. е. ). Запись означает, что если ресурс затрачивается или используется в количестве единиц, то продукция выпускается в количестве единиц. Символ – знак функции – является характеристикой производственной системы, преобразующей ресурс в выпуск. Символ связывает между собой независимую переменную с зависимой переменной . В макроэкономической теории принято считать, что – это максимально возможный объем выпуска продукции, если ресурс затрачивается или используется в количестве единиц. В макроэкономике такое понимание не совсем корректно: возможно, при другом распределении ресурсов между структурными единицами экономики выпуск мог бы быть и большим. В этом случае ПФ – это статистически устойчивая связь между затратами ресурса и выпуском. Более правильной является символика , где – вектор параметров ПФ.

ПФ могут иметь различные области использования. Принцип “затраты – выпуск” может быть реализован как на микро – так и на макроэкономическом уровне. Сначала остановимся на микроэкономическом уровне. ПФ может быть использована для описания взаимосвязи между величиной затрачиваемого или используемого ресурса в течение года на отдельном предприятии и годовым выпуском продукции этого предприятия. На микроэкономическом уровне в роли производственной системы может выступать также отрасль, межотраслевой производственный комплекс. МИПФ строятся и используются в основном для решения задач анализа и планирования, а также задач прогнозирования.

ПФ может быть использована для описания взаимосвязи между годовыми затратами труда в масштабе региона или страны в целом и годовым конечным выпуском продукции (или доходом) этого региона или страны в целом. Здесь в роли производственной системы выступает регион или страна в целом (точнее хозяйственная система региона или страны) – имеем макроэкономический уровень и макроэкономическую ПФ (МАПФ). МАПФ строятся и активно используются для решения всех трех типов задач (анализа, планирования и прогнозирования).

Точное толкование понятий затрачиваемого (или используемого) ресурса и выпускаемой продукции, а также выбор единиц их измерения зависят от характера и масштаба производственной системы, особенностей решаемых (с помощью ПФ) задач (аналитических, плановых, прогнозных), наличия исходных данных. На микроэкономическом уровне затраты и выпуск могут измеряться как в натуральных, так и в стоимостных единицах (показателях). Годовые затраты труда могут быть измерены в человеко-часах (объем человеко-часов – натуральный показатель) или в рублях выплаченной заработной платы (ее величина – стоимостной показатель). Выпуск продукции может быть представлен в штуках или в других натуральных единицах (тоннах, метрах и т. п.) или в виде своей стоимости.

На макроэкономическом уровне затраты и выпуск измеряются, как правило, в стоимостных показателях и представляют собой стоимостные (ценностные) агрегаты, т. е. суммарные величины произведений объемов затрачиваемых (или используемых) ресурсов и выпускаемых продуктов на их цены.

Производственная функция (ПФ) – это модель, которая выражает технологическую зависимость между результатами деятельности технического объекта и затратами факторов производства. Входными параметрами являются ресурсы R1 , …, Rn, а выходными – результат в виде годовых объемов производства различных видов продукции Y1 , …, Ym.

В качестве ресурсов (факторов производства) наиболее часто рассматриваются величины затрат живого труда, предметов и средств труда, используемых в процессе производства: накопленный труд в форме производственных фондов (капитал) К и настоящий (живой) труд. В качестве результата рассматривается валовой выпуск (либо валовой внутренний продукт, либо национальный доход).

Простейшей моделью производственной функции является:

Y – выход;

K – капитал;

L – трудовые ресурсы.

Таким образом, экономика замещается своей моделью в форме ПФ

Y= F(K, L),

Т. е. выпуск (продукции) есть функция от затрат ресурсов (капитала и труда).

Если модель учитывает время t затрат на производство, то производственная функция записывается в виде:

Y = F(K, L, t)

Производственная функция должна удовлетворять следующим условиям, поддающимся естественной экономической интерпретации:

1) F(K, L) – непрерывная дважды дифференцируемая функция в области K>0;

2) ,

– с ростом ресурсов выпуск растет;

3) ,

– с увеличением ресурсов скорость роста выпуска замедляется;

Темпы прироста часто убывают при увеличении какого-либо фактора, особенно, если производство ведется по какой-либо неизменной технологии. Убывание темпов роста при увеличении масштабов производства часто связано с вынужденным использованием более дорогих или менее качественных ресурсов. При этом при достижении определенного уровня инвестиций в производство какого-нибудь отдельного фактора рост производства прекращается полностью, несмотря на увеличение рассматриваемого фактора.

4) F(lK, lL) = lF(K, L)

– гипотеза однородности

5) F(0, L) = F(K, 0) = 0

– при отсутствии одного из ресурсов производство невозможно;

6) для F(K, L, t)

Виды производственных функций

Рассмотрим 4 производственные функции:

1. Линейная модель (функция с взаимозамещением ресурсов), задается уравнением:

Y = a0 + b1 K + c1 L,

Где b1 , c1 >0 – частные эффективности ресурсов (предельный физический продукт затрат)

2. Квадратичная модель, задается уравнением:

Y = a0 + b1 K + c1 L + b2 K2 + c2 L2

3. Модель Кобба-Дугласа, задается уравнением:

Y = AKa Lb,

Где А – коэффициент нейтрального технического прогресса; а1 , a2 – коэффициенты эластичности по труду и капиталу.

4. Модель с учетом НТП, задается уравнением:

Y = AKa Lb er0t,

Где – специальный множитель технического процесса, r0 – параметр нейтрального НТП (r0 >0)

Параметры функции могут быть определены по методу наименьших квадратов

1. Для линейной модели:

Функция неувязок:

G = = ® min по а0 , b1 , c1

Производные по коэффициентам:

, где i = 1…n

Приравниваем нулю

(1)

2. Для квадратичной модели:

Функция неувязок:

G = = ® min по а0 , b1 , c1 , b2 , c2

Производные по коэффициентам:

, где i = 1…n

Приравниваем нулю

(2)

3. Для модели Кобба-Дугласа:

Прологарифмируем функцию:

LnY = lnA + alnK + blnL

Функция неувязок:

G = = ® min по A, a, b

Частные производные по коэффициентам:

, где i = 1…n

Приравниваем нулю

(3)

4. Для модели с учетом НТП:

Прологарифмируем функцию:

LnY = lnA + alnK + blnL + r0t

Функция неувязок:

G = = ® min по A, a, b, r0

Частные производные по коэффициентам:

, где i = 1…n

Приравниваем нулю

(4)

Далее из полученных уравнений находим неизвестные коэффициенты

ПРАКТИЧЕСКАЯ ЧАСТЬ

Исходные данные для построения ПФ

Годы

Y, Валовая стоимость

Продукции, млн. руб.

K, Капитал, млн. руб.

L, Расходы по з/п, млн. руб.

1987

3,626

12,021

1,251

1988

4,014

13,787

1,321

1989

4,453

15,429

1,392

1990

4,869

17,212

1,454

1991

5,296

19,042

1,507

1992

5,798

20,79

1,568

1993

6,233

23,097

1,598

1994

6,641

25,108

1,626

1995

7,241

27,097

1,667

1996

7,854

29,627

1,706

1997

8,09

32,362

1,753

1998

8,504

35,391

1,778

1999

8,879

38,474

1,806

2000

9,053

41,779

1,813

2001

9,11

45,976

1,855

2002

9,321

50,354

1,878

2003

9,545

55,018

1,898

2004

9,539

58,733

1,906

2005

9,774

61,935

1,911

2006

9,955

66,467

1,926

2007

10,1

69,488

1,939

Построение производственной функции

Линейная производственная функция

Построим линейную производственную функцию вида:

(1)

Где K – затраты капитала; L – расходы по заработной плате. И функция неувязок имеет вид

Анализируем исходные данные с помощью “Поиск решения” Microsoft Excel 2003. В результате получаем следующие показатели: Функция неувязок

Достигает минимума при

A0

A1

A2

-8,384563

0,0112465

9,15343789

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

3,201583

0,180130129

1988

13,787

1,321

4,014

3,862185

0,023047917

1989

15,429

1,392

4,453

4,530545

0,006013299

1990

17,212

1,454

4,869

5,118111

0,062056363

1991

19,042

1,507

5,296

5,623824

0,107468886

1992

20,79

1,568

5,798

6,201843

0,163089243

1993

23,097

1,598

6,233

6,502392

0,072572016

1994

25,108

1,626

6,641

6,781305

0,019685475

1995

27,097

1,667

7,241

7,178965

0,003848315

1996

29,627

1,706

7,854

7,564403

0,083866442

1997

32,362

1,753

8,09

8,025374

0,004176551

1998

35,391

1,778

8,504

8,288275

0,046537103

1999

38,474

1,806

8,879

8,579245

0,089853262

2000

41,779

1,813

9,053

8,680488

0,138764849

2001

45,976

1,855

9,11

9,112134

4,55595E-06

2002

50,354

1,878

9,321

9,371901

0,002590889

2003

55,018

1,898

9,545

9,607423

0,003896665

2004

58,733

1,906

9,539

9,722432

0,033647144

2005

61,935

1,911

9,774

9,80421

0,00091265

2006

66,467

1,926

9,955

9,992481

0,001404816

2007

69,488

1,939

10,1

10,14545

0,002065819

Следовательно, теперь мы можем построить ПФ:

Y^ = -8,384563 + 0,0112465*K +9,15343789*L

Рис.1 Графическое представление результатов аппроксимации производственной функции

Квадратичная производственная функция

Построим квадратичную производственную функцию вида:

(2)

Где K – затраты капитала; L – расходы по заработной плате. И функция неувязок имеет вид

Анализируем исходные данные с помощью “Поиск решения” Microsoft Excel 2003. В результате получаем следующие показатели:

Функция неувязок Достигает минимума при:

A0

A1

A2

A3

A4

10,65719

-0,02671

-16,62825

-0,00006

8,9660141

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

3,556971

0,004765067

1988

13,787

1,321

4,014

3,957216

0,003224444

1989

15,429

1,392

4,453

4,456814

1,45478E-05

1990

17,212

1,454

4,869

4,956672

0,007686313

1991

19,042

1,507

5,296

5,429411

0,017798428

1992

20,79

1,568

5,798

6,045845

0,06142728

1993

23,097

1,598

6,233

6,330639

0,009533385

1994

25,108

1,626

6,641

6,614652

0,000694191

1995

27,097

1,667

7,241

7,083803

0,024710798

1996

29,627

1,706

7,854

7,538203

0,099727837

1997

32,362

1,753

8,09

8,130652

0,001652609

1998

35,391

1,778

8,504

8,412681

0,00833908

1999

38,474

1,806

8,879

8,750258

0,016574426

2000

41,779

1,813

9,053

8,756131

0,08813129

2001

45,976

1,855

9,11

9,303874

0,037587284

2002

50,354

1,878

9,321

9,547923

0,051493886

2003

55,018

1,898

9,545

9,737155

0,036923633

2004

58,733

1,906

9,539

9,751322

0,045080747

2005

61,935

1,911

9,774

9,729603

0,001971064

2006

66,467

1,926

9,955

9,838768

0,013509783

2007

69,488

1,939

10,1

9,966716

0,017764679

Следовательно, ПФ имеет вид:

Y^ = 10,65719 – 0,02671*K – 16,62825*L – 0,00006*K2 + 8,9660141*L2

Рис.2 Графическое представление результатов аппроксимации производственной функции

Производственная функция Кобба-Дугласа

Производственная функция Кобба-Дугласа при

Построим производственную функцию Кобба-Дугласа вида:

, (3)

Где K – затраты капитала; L – расходы по заработной плате, при α+β=1. И функция неувязок имеет вид

Анализируем исходные данные с помощью “Поиск решения” Microsoft Excel 2003. В результате получаем следующие показатели:

A

1,51428

0,358355

0,641646

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

4,261998

0,404493704

1988

13,787

1,321

4,014

4,635727

0,386545002

1989

15,429

1,392

4,453

4,991358

0,289829368

1990

17,212

1,454

4,869

5,338037

0,219995285

1991

19,042

1,507

5,296

5,663481

0,135042394

1992

20,79

1,568

5,798

5,995276

0,038917787

1993

23,097

1,598

6,233

6,301843

0,004739403

1994

25,108

1,626

6,641

6,565998

0,005625294

1995

27,097

1,667

7,241

6,85654

0,147809652

1996

29,627

1,706

7,854

7,185243

0,447235307

1997

32,362

1,753

8,09

7,546696

0,295179318

1998

35,391

1,778

8,504

7,863713

0,409967528

1999

38,474

1,806

8,879

8,18429

0,482621959

2000

41,779

1,813

9,053

8,450547

0,36295021

2001

45,976

1,855

9,11

8,874924

0,055260868

2002

50,354

1,878

9,321

9,241757

0,006279478

2003

55,018

1,898

9,545

9,604897

0,003587687

2004

58,733

1,906

9,539

9,859026

0,102416413

2005

61,935

1,911

9,774

10,06527

0,084839983

2006

66,467

1,926

9,955

10,37517

0,176539605

2007

69,488

1,939

10,1

10,58735

0,237509292

ПФ примет следующий вид:

Y^ = 1,51428*K 0,358355 *L 0,641646

Риc. 3 Графическое представление результатов аппроксимации производственной функции

Производственная функция Кобба-Дугласа при

Построим производственную функцию Кобба-Дугласа вида:

, (4)

Где K – затраты капитала; L – расходы по заработной плате, при α+β≠1.

И функция неувязок имеет вид

Анализируем исходные данные с помощью “Поиск решения” Microsoft Excel 2003.

В результате получаем следующие показатели:

Функция неувязок Достигает минимума при:

A

1,897142

0,00058832

2,549475

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

3,362716

0,069318534

1988

13,787

1,321

4,014

3,863748

0,022575574

1989

15,429

1,392

4,453

4,41574

0,001388299

1990

17,212

1,454

4,869

4,934927

0,004346316

1991

19,042

1,507

5,296

5,406895

0,012297621

1992

20,79

1,568

5,798

5,982806

0,03415343

1993

23,097

1,598

6,233

6,279367

0,002149873

1994

25,108

1,626

6,641

6,564019

0,005926094

1995

27,097

1,667

7,241

6,994586

0,060719804

1996

29,627

1,706

7,854

7,419767

0,1885579

1997

32,362

1,753

8,09

7,952506

0,018904497

1998

35,391

1,778

8,504

8,245287

0,06693267

1999

38,474

1,806

8,879

8,5808

0,088922973

2000

41,779

1,813

9,053

8,666268

0,149561493

2001

45,976

1,855

9,11

9,187851

0,006060771

2002

50,354

1,878

9,321

9,481589

0,025788929

2003

55,018

1,898

9,545

9,741659

0,038674906

2004

58,733

1,906

9,539

9,847063

0,094903007

2005

61,935

1,911

9,774

9,913364

0,019422386

2006

66,467

1,926

9,955

10,11337

0,025082505

2007

69,488

1,939

10,1

10,28859

0,035565711

В результате ПФ будет иметь следующий вид:

Y^ = 1,897142*K 0,00058832 *L 2,549475

Рис.4 Графическое представление результатов аппроксимации производственной функции

Производственная функция Кобба-Дугласа с учетом НТП при

Построим производственную функцию Кобба-Дугласа с учетом НТП вида:

, (5)

Где K – затраты капитала; L – расходы по заработной плате, – специальный множитель технического прогресса, p0 – параметр нейтрального НТП (p0 >0) при α+β=1. И функция неувязок имеет вид

Анализируем исходные данные с помощью “Поиск решения” Microsoft Excel 2003.

В результате получаем следующие показатели:

Функция неувязок Достигает минимума при:

A

P

1,11077

0,49463

0,50537

-0,009

T

Годы

K

L

Y

Y^

(Y-Y^)^2

0

1987

12,021

1,251

3,626

4,255462

0,396223037

1

1988

13,787

1,321

4,014

4,639196

0,390869685

2

1989

15,429

1,392

4,453

4,99121

0,289670078

3

1990

17,212

1,454

4,869

5,33781

0,219782385

4

1991

19,042

1,507

5,296

5,662748

0,134504095

5

1992

20,79

1,568

5,798

5,980033

0,033136038

6

1993

23,097

1,598

6,233

6,303323

0,004945302

7

1994

25,108

1,626

6,641

6,567753

0,005365166

8

1995

27,097

1,667

7,241

6,844795

0,156978794

9

1996

29,627

1,706

7,854

7,173191

0,463500994

10

1997

32,362

1,753

8,09

7,529158

0,314544001

11

1998

35,391

1,778

8,504

7,855534

0,420508573

12

1999

38,474

1,806

8,879

8,178033

0,491354634

13

2000

41,779

1,813

9,053

8,458675

0,35322206

14

2001

45,976

1,855

9,11

8,891876

0,047577972

15

2002

50,354

1,878

9,321

9,275526

0,002067921

16

2003

55,018

1,898

9,545

9,65592

0,012303177

17

2004

58,733

1,906

9,539

9,904998

0,133954245

18

2005

61,935

1,911

9,774

10,09099

0,100483383

19

2006

66,467

1,926

9,955

10,39732

0,195646721

20

2007

69,488

1,939

10,1

10,56933

0,220267427

ПФ будет иметь следующий вид:

Y^ = 1,11077*e -0,009t *K 0,49463 *L 0,50537

Рис. 5 Графическое представление результатов аппроксимации производственной функции

Производственная функция Кобба-Дугласа с учетом НТП при

Построим производственную функцию Кобба-Дугласа с учетом НТП вида:

, (6)

Где K – затраты капитала; L – расходы по заработной плате, – специальный множитель технического прогресса, p0 – параметр нейтрального НТП (p0 >0) при α+β≠1. И функция неувязок имеет вид

Анализируем исходные данные с помощью “Поиск решения” Microsoft Excel 2003.

В результате получаем следующие показатели:

Функция неувязок Достигает минимума при:

А

P

1,6643

0,03954

2,72382

-0,0087

T

Годы

K

L

Y

Y^

(Y-Y^)^2

0

1987

12,021

1,251

3,626

3,379381

0,060820827

1

1988

13,787

1,321

4,014

3,90663

0,01152829

2

1989

15,429

1,392

4,453

4,486108

0,001096134

3

1990

17,212

1,454

4,869

5,029232

0,025674263

4

1991

19,042

1,507

5,296

5,51816

0,049355124

5

1992

20,79

1,568

5,798

6,115709

0,100939186

6

1993

23,097

1,598

6,233

6,410297

0,031434332

7

1994

25,108

1,626

6,641

6,684439

0,001886985

8

1995

27,097

1,667

7,241

7,112754

0,016447068

9

1996

29,627

1,706

7,854

7,535854

0,10121715

10

1997

32,362

1,753

8,09

8,072406

0,000309535

11

1998

35,391

1,778

8,504

8,346336

0,024857912

12

1999

38,474

1,806

8,879

8,662023

0,047078837

13

2000

41,779

1,813

9,053

8,705948

0,120444823

14

2001

45,976

1,855

9,11

9,220546

0,012220454

15

2002

50,354

1,878

9,321

9,486389

0,027353667

16

2003

55,018

1,898

9,545

9,713119

0,028264079

17

2004

58,733

1,906

9,539

9,764764

0,050969488

18

2005

61,935

1,911

9,774

9,769625

1,91375E-05

19

2006

66,467

1,926

9,955

9,920761

0,001172281

20

2007

69,488

1,939

10,1

10,03394

0,004364053

ПФ будет иметь следующий вид:

Y^ = 1,6643*e -0,0087 *K 0,03954 *L 2,72382

Рис. 6 Графическое представление результатов аппроксимации производственной функции

Выбор лучшей модели

В предыдущей главе нами были построены и рассмотрены шесть видов производственной функции. Для построения прогноза уровня валовой стоимости продукции по с/х отрасли Украины для следующего года необходимо выбрать оптимальную модель производственной функции.

Для этого анализируем исходные данные с помощью линейного регрессионного анализа Microsoft Excel 2003, который заключается в подборе графика для набора наблюдений с помощью метода наименьших квадратов.

В результате получаем следующие показатели:

Модель производственной функции

Коэффициент детерминации

Стандартная ошибка

Сумма квадратов отклонений

Линейная

1,00

4,91*10-11

1,045632392

Кобба-Дугласа при α+β=1

0,999651913009379

0,0390553466664897

4,297385537

Кобба-Дугласа при α+β≠1

0,9986565670686

0,0849838692196464

0,971253293

Кобба-Дугласа с учетом НТП при α+β=1

0,999434169760968

0,0500555152681243

4,386905687

Кобба-Дугласа с учетом НТП при α+β≠1

0,998312036260028

0,0924459064874472

0,717453627

Квадратичная

0,994458953118657

0,167341009587636

0,54886177

Критерий выбора следующий: наибольшее значение коэффициента детерминации , наименьшая ошибка и наименьшая сумма квадратов отклонений.

Таким образом, для данной отрасли мы выбираем производственную функцию Кобба-Дугласа при α+β=1, которая выглядит следующим образом:

Y^ = 1,51428*K 0,358355 *L 0,641646

Полученная модель может быть использована для прогнозирования будущих значений валовой стоимости продукции на основе известных или ожидаемых уровнях капитала и затрат на заработную плату.

Расчет экономических характеристик выбранной производственной функции

Итак, процесс производства описывается с помощью функции Кобба-Дугласа при α+β=1

Y^ = 1,51428*K 0,358355 *L 0,641646

Оценим основные характеристики этой функции для способа производства, при котором К=75 млн. руб., а L=2,5млн. руб.:

Эластичность выпуска продукции по капиталу и труду

Эластичность выпуска продукции по капиталу и труду равна соответственно a и b, так как

,

И аналогичным образом легко показать, что (dy/dL)/(y/L) равно b.

Следовательно, увеличение затрат капитала на 1% приведет к росту выпуска продукции на 0,358355 процента, а увеличение затрат труда на 1% приведет к росту выпуска на 0,641646 процентов. Эти величины a=0,358355 и b=0,641646 положительны, следовательно увеличение затрат производственных факторов должно вызывать рост выпуска. В то же время, они меньше единицы, и разумно предположить, что уменьшение эффекта от масштаба производства приводит к более медленному росту выпуска продукции, чем затрат производственных факторов, если другие факторы остаются постоянными. Их сумма равна единице, и это говорит о постоянном эффекте от масштаба производства (y увеличивается в той же пропорции, что и К и L).

Производительность труда

Производительность труда показывает степень результативности использования трудовых ресурсов и вычисляется по формуле . Для нашего примера производительность труда будет равна

Фондоотдача

Фондоотдача (капиталоотдача) характеризует уровень плодотворности применения основного капитала (основных фондов) и вычисляется по формуле . Для нашего примера фондоотдача будет равна:

Предельная производительность труда и капитала

Для расчета этих величин определим частные производные функции по каждому из факторов:

– предельная производительность труда

– предельная производительность капитала

Таким образом, увеличение затрат капитала на 1 единицу при неизменных объемах используемого труда приведет к росту выпуска продукции на 0,061197 единицу, а увеличение затрат труда на 1 единицу при неизменных объемах капитала приведет к росту выпуска на 3,287271 единиц. И предельная производительность труда в три раза превышает аналогичную величину для фактора капитал.

Предельная норма замещения труда капиталом

Эта величина обозначается S и равняется . И для нашей функции предельная норма замещения ресурсов будет равна:

Таким образом, если затраты труда уменьшатся на 1 единицу, то при неизменном выпуске продукции затраты капитала увеличатся на 53,71613 единицы.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной курсовой работы были построены и проанализированы различные модели производственных функций на основе данных, отражающих сельскохозяйственную отрасль Украины, с использованием стандартного набора факторов (капитальные затраты и расходы по заработной плате) позволяющие оценить и получить некоторое представление о взаимном влиянии объясняемой (Y) и объясняющих переменных (Х1 , Х2 ).

Построение производственных функций помогло нам рассмотреть эффективность применения определенной комбинации ресурсов. В итоге можно сделать вывод, что расходы по заработной плате, так же, как и затраты капитала несомненно влияют на отраслевой выпуск продукции, ведь от условий производства зависит то, каким образом отрасль будет позиционировать себя и то насколько успешно будет ее деятельность.

Стоит отметить, что без эконометрических методов в экономике невозможно построить надежного прогноза, а, следовательно, подвергается угрозе экономическая эффективность и возможность дальнейшего развития, как отдельного предприятия, так и системы национального хозяйства.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Кремер Н. Ш., Путко Б. А. Эконометрика: Учебник для вузов / Под ред. проф. Н. Ш. Кремера. – М.: Юнити-Дана, 2003.

2. Мхитарян В. С., Архипова М. Ю., Сиротин В. П. Эконометрика: Учебно-методический комплекс. – М.: Изд. Центр ЕАОИ. 2008. – 144с.

3. Статистический ежегодник Украины, 1986-2007гг.

4. Калинина В. Н. Соловьев В. И. Практикум по эконометрическому моделированию. – М.: Юнити-Дана, 2008.

5. Волков А. В. Математическая экономика. – М.: Изд. Центр РЭА им. Плеханова, 2008.

ИНТЕРНЕТ-РЕСУРСЫ

1. http://www. prime-tass. ru/

2. www. ukrstat. gov. ua

3. http://www. expert. ru/


Модель производственной функции для сельскохозяйственной отрасли