Общий курс высшей математики

Академия труда и социальных отношений

Курганский филиал

Социально-экономический факультет

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: “Общий курс высшей математики”

Студент гр. ЗМб 1338

Ст. преподаватель

Курган – 2009

Задание 03

В ромбе ABCD известны координаты вершин А и С и тангенс внутреннего угла С. Найти уравнения диагоналей и сторон, координаты двух других вершин, а также площадь этого ромба, если А(4,2), С(16;18), . Сделать чертеж.

Решение:

Зная координаты вершин А и С запишем уравнение диагонали АС как уравнение прямой, проходящей через две заданные точки:

12(y-2)=16(x-4);

12y-24=16х-64

16х-12у-40=0 /:4

4х-3у-10=0 – уравнение диагонали А С в форме общего уравнения прямой.

Перепишем это уравнение в форме уравнения прямой с угловым коэффициентом:

-3y=-10-4х;

3y=4x-10;

Y= откуда k А С=

Так как в ромбе диагонали взаимно перпендикулярны, то угловой коэффициент диагонали BD будет равен

КВD =

Само же уравнение диагонали BD найдем как уравнение прямой, проходящей через заданную точку в направлении, определяемом угловым коэффициентом КBD.

В качестве “заданной точки” возьмем точку Е пересечения диагоналей ромба, которая лежит на середине отрезка АС, вследствие чего:

Е (10;10)

Итак, уравнение диагонали BD запишем в виде

У – yE= КВD (x-xE)

Y-10= (x-10);

Y-10=X+ / 4

4у-40=-3х+30

3х+4у-70=0 – уравнение диагонали BD

Чтобы найти уравнение сторон ромба, надо определить только угловые коэффициенты КАВ = КCD и КВС = КAD прямых, на которых эти стороны лежат, ибо точки, через которые эти прямые проходят, известны – это вершины А и С ромба.

Для определения указанных угловых коэффициентов воспользуемся формулой , позволяющей вычислять тангенс угла φ между двумя заданными прямыми по их угловым коэффициентам К1 и К2 ; при этом угол φ отсчитывается против часовой стрелки от прямой у = К1 х + b1 до прямой у = К2 х + b2 . Формула оказывается удобной, потому что уравнение диагонали АС уже найдено (и, следовательно, известен ее угловой коэффициент КАС ), а положение сторон ромба относительно этой диагонали однозначно определяется внутренними углами А и С, которые равны между собой и для которых по условию известен их тангенс ().

Так диагонали ромба делят его углы пополам, то, положив из формулы для тангенса двойного угла при найдем tg φ:

Положим z = tgφ; тогда , тогда

15 2z = 8 (1-z2 )

30z=8-8z2

8z2 +30z-8=0 /:2

4z2 +15z-4=0

D=152 -4 4 (-4)= 225+64=289

Z1 =;

Z2=

Но т. к. угол в ромбе φ всегда острый корень z2 =-4 отбрасываем и получаем в итоге, что tgφ =

Угол φ является углом между прямыми ВС и АС, с одной стороны, и прямыми АС и CD – с другой (см. чертеж).

Потому в первом случае по формуле имеем

Откуда при то получим

4()=1+;

= /3

16-12 KBC =3+4KBC;

16 KBC =13;

KBC =

Во втором случае по формуле имеем =;

При КАС = получим:

;

4(KcD-)=1+KcD;

4KcD-=1+KcD/ 3;

12KcD-16=3+4KcD;

8KcD =19

KcD=

Так как противоположные стороны ромба параллельны, то тем самым мы определили угловые коэффициенты всех его сторон.

КCD = KAB = ;

KBC = KAD = .

Зная теперь эти угловые коэффициенты и координаты вершин А и С, по уже использовавшимся выше формулам найдем уравнения прямых АВ, CD, BC и AD.

Уравнение АВ: у – уA = KAB (х – хA),

У -2 = (х-4) /8;

8у-16=19х-76;

19 х-8 у-60=0.

Уравнение CD: у – уC = КCD (х – xC )

У -18= ( х-16) / 8;

8у -144=19х-304;

19 х-8 у-160=0.

Уравнение ВС: у – уC = КBC ( х xC );

У -18=( х – 16);

У – 18= х – 13 / 16;

16у -288 = 13х – 208;

13х -16 у +80=0

Уравнение AD: у – уA = КAD ( х – xA);

У -2=( х -4);

У -2= х – /16;

16у -32= 13х-52;

13х-16у-20=0

Вершины ромба являются точками пересечения его соответствующих сторон. Поэтому их координаты найдем путем совместного решения уравнений этих сторон.

19х -8у -60 = 0 / (-2)

13х -16у +80= 0

-38х+16у+120=0

13х-16у+80=0

-25х = – 200

Х = 8

13 8 -16у+80=0

104-16у+80=0

16у=184

У=11,5 т. В (8;11,5)

Для вершины D:

19х -8у +-160 = 0 / (-2)

13x – 16 y – 20 = 0

-38х + 16у +320 = 0

13x – 16 y – 20 = 0

-25х = – 300

Х=12

13 12 – 16у-20 = 0

156 -16 у-20=0

16у – 136

У=8,5 т. D (12;8,5)

Координаты этих точек удовлетворяют ранее найденному уравнению 3х + 4у – 70 = 0 диагонали BD, что подтверждает их правильность.

Площадь ромба вычислим по формуле S = ½ d1 d2 , где d1 и d2 – диагонали ромба.

Полагая d1 = |АС|, а d2 = |BD|, длины этих диагоналей найдем как расстояния между соответствующими противоположными вершинами ромба:

D1 =

D2 =

В итоге площадь ромба будет равна S = ∙ 20 ∙ 5 = 50 кв. ед.

Ответ:

АС: 4х – 3у – 10 = 0;

BD: 3х + 4у – 70= 0;

АВ: 19х -8у -60 = 0;

CD:19 х -8у – 160 = 0;

ВС: 13х -16у + 80 = 0;

AD: 13х -16у – 20=0;

В (8;11,5);

D (12; 8,5);

S = 50 кв. ед.

Задание 27

Найти предел

А)

Решение:

А) Функция, предел которой при х→ 2 требуется найти, представляет собой частное двух функций. Однако применить теорему о пределе частного в данном случае нельзя, так как предел функции, стоящей в знаменателе, при х→ 2 равен нулю.

Преобразуем данную функцию, умножив числитель и знаменатель дроби, находящейся под знаком предела, на выражение , сопряженное знаменателю. Параллельно разложим квадратный трехчлен в числителе на линейные множители:

===

==

2 х 2 – 3 х – 2=0

D=3 2 -42(-2)=9+16=25

Х1 == =2;

Х2 = == –

==

===12,5

Ответ: 12,5

Б)

Умножим числитель и знаменатель дроби, стоящей под знаком предела, на выражение, сопряженное к знаменателю:

==

=

==

+=

Найдем каждый сомножитель.

====

+)=(=1+1=2.

Предел есть первый замечательный предел.

Таким образом.

после замены t=3x будет равен =3

Аналогично =5

Получим

=

1

В итоге получим:

Ответ:

В)

Преобразуем основание данной функции:

Ведем новую переменную t= , тогда

T (4x-1) = 2

4xt – t = 2

4xt =2 + t

X=

X=

Заметим, что предел функции t при x → ∞ равен нулю т. е t → 0 при x → ∞. Следовательно

===

=

Воспользуемся теоремой о пределе произведения, следствием теоремы о пределе сложной функции, вторым замечательным пределом получим.

Ответ:

Г)

Представим выражение под знаком предела в виде

===

==

Найдем значение каждого предела:

==1

= – lne следствие из второго замечательного предела.

=3=3 1=3

В итоге получим

=1= =

Ответ:

Задание 50

Найти производную функции

А)

Решение:

При решении будем применять правила дифференцирования частного произведения и сложной функции.

=

==

=

Б)

+

+=+=

= +=+

В)

Решение:

Г)

==

=

==

=

==

Задание 73

Вычислить приближенное значение функции f (x) = ln в точке x1 заменив приращение функции в точке х0 = 0 ее дифференциалом. Если известно a=8; b=13; c=21;x1=0.013

Решение:

Если приращение аргумента ∆х = х1 – х0 достаточно мало по абсолютной величине, то приращение функции ∆f = f (x1 ) – f (x0 ) приближенно равно дифференциалу функции df. Поэтому справедлива формула

F (x0 + ∆ x) ≈ f (x0 ) + f/ (x0 ) ∆ x.

Для вычисления приближенного значения функции у = ln в точке х1 = 0,013 вычислим производную этой функции в точке х0 = 0:

F/ (x) = ==

==

F/ (x) = f/ (0) = ==-1

Подставив в формулу получим; f(0,013) =-0,013

Ответ: -0,013

Задание 96

Исследовать функцию и построить ее график.

Решение

1. Область определения данной функции – вся числовая ось, то есть интервал (-∞; +∞), так как выражение

F (x) =

В правой части аналитического задания функции имеет смысл при любом действительном х.

2. Как элементарная функция, данная функция является непрерывной в каждой точке своей области определения, то есть в каждой точке числовой оси.

3. Найдем все асимптоты графика данной функции.

Вертикальных асимптот график данной функции у = f (x) не имеет, поскольку последняя непрерывна на всей числовой оси формула

Для отыскания наклонной асимптоты при х→ +∞ вычислим следующие два предела k = limy/xи b = lim (y – kx)

Если оба они существуют и конечны, то прямая у = kx + bявляется наклонной асимптотой при х→+∞ графика функции у = f (x)

Прежде чем обращаться к вычислению указанных пределов, напомним тождество √х2 = |х| (1), из которого следует, что при x > 0 √х2 = х,

А при х < 0 √х2 = – х или х = -√х2 (2)

Приступая к вычислению первого предела, разделим числитель и знаменатель дроби на х2 , затем воспользуемся равенством (1) и основными свойствами предела:

K======

==0

Для вычисления второго предела разделим числитель и знаменатель дроби на х и, действуя далее аналогично тому, как и при вычислении первого предела, получим:

B =(y – kx)= Y == =

===3

Следовательно, прямая у = 3 является наклонной асимптотой графика данной функции при х→+∞ (поскольку угловой коэффициент k этой прямой равен нулю, то такую наклонную асимптоту называют также горизонтальной при х→+∞.

Для отыскания наклонной асимптоты при х→ -∞ вычислим пределы k1 = limy/xи b1 = lim (y – kx)

Если оба они существуют и конечны, то прямая y = k1 x + b1 является наклонной асимптотой при х→-∞

Для вычисления этих пределов используем те же приемы, что и выше, учитывая только на сей раз вместо равенства (1) равенство (2). Теперь, в частности, для отрицательных значений аргумента имеем:

==-=- и следовательно, k1 = 0, b1 = -3, то есть наклонной (горизонтальной) асимптотой при х→-∞ на сей раз является прямая у = -3

4. Найдем точки пересечения графика данной функции с осями координат и установим участки ее знакопостоянства.

Для отыскания абсцисс точек пересечения графика с осью ОХ решим уравнение =0

Его единственным решением, очевидно, является х = Причем, в силу положительности знаменателя при любом х ясно, что f(x)>0 при х>F(x)<0при х <

Таким образом, точка А (; 0) является единственной точкой пересечения графика функции с осью ОХ, а для х из интервалов (-∞; ) и (; +∞) соответствующие точки графика функции расположены, соответственно, ниже и выше оси абсцисс.

Точка пересечения графика функции у = f (x) с осью ОУ – это всегда точка (0; f(0)), если только нуль входит в область определения функции. В нашем случае: f (0) ===-=-2,24 такой точкой является В(0;-2,24).

5. Приступим теперь к отысканию точек экстремума данной функции и участков ее монотонности.

Вычислим сначала ее производную:

У===

====

Решая уравнение у/ = 0, получим единственный корень производной:

5(3+х) = 0 х=-3

Таким образом, необходимое условие экстремума выполняется лишь в точке х = -3. Эта точка разбивает ось абсцисс на два интервала (-∞;-3) и (-3; +∞) знакопостоянства производной.

Для определения знака производной в каждом интервале (пользуясь ее непрерывностью) определим знак производной в одной какой-либо точке каждого интервала. Так как

F/ (-1) = < 0 и f/ (2) = = >0

То заключаем, что функция убывает на интервале (-∞;-3) и возрастает на интервале (-3; +∞), и значит точка х = -3 является точкой минимума данной функции.

Значение функции в этой точке (то есть минимум функции) равно

F (-3) = ==-=-3,74

С (-3;-3,74)

6. Наконец, обратимся к исследованию данной функции на выпуклость, вогнутость и существование точек перегиба.

С этой целью найдем производную второго порядка данной функции:

У=(у)// ===

= =

===

Решим затем уравнение у// = 0, эквивалентное квадратному уравнению:

Его корни: х1 = -5; х2 = 0,5 , которые разбивают область определения функции на три интервала знакопостоянства второй производной: (-∞; -5), (-5; 0.5), (0.5; +∞).

Для определения знака производной второго порядка в каждом из этих интервалов определим ее знак в какой-либо точке соответствующего интервала:

F// (-6) = == < 0

F// (0) == > 0

F// (2) === < 0

Из полученных неравенств вытекает, что график функции является вогнутым на интервале (-5; 0.5), и выпуклым на интервалах (-∞; -5) и (0.5; +∞) и значит точки D (-5; f(-5)) и Е (0.5; f(0.5)), являются точками перегиба графика данной функции. Осталось найти ординаты этих точек:

F (-5) === ≈-3,65

F (0.5) = = = ≈ -1,53

Точки D(-5;-3,65) и E(0,5; -1,53)

Учитывая результаты полного исследования, соединим непрерывной кривой все ранее отмеченные точки предварительного чертежа так, чтобы эта кривая слева и справа неограниченно приближалась к асимптотам у=-3 и у=3

Список использованной литературы:

1 Данко. П. Е. Попов А. Г., Кожевникова Т. Я., Высшая математика в упражнениях и задачах. Учебное пособие для вузов. М.: ОНИКС 21век, 2002.- 304 с.

2 Кремер Н. Ш. Высшая математика для экономистов: учебник для студентов вузов по экономическим специальностям. М.: ЮНИТИ-ДАНА, 2007.-479 с.

3 Коломогоров А..Н., Абрамов А..М., Дудницын Ю. П.. Ивлев Б. М., Шварцбурд С. И. Алгебра и начала анализа:Учебник. М.: Просвещение, 1993.-320 с.

4 Кудрявцев Л. Д. курс математического анализа: Учебник для студентов вузов. М.: высшая школа, 1989.-352 с.


Общий курс высшей математики