Оценивание параметров и проверка гипотез о нормальном распределении

Расчетная работа

Выполнил Шеломанов Р. Б.

Кафедра математической статистики и эконометрики

Московский государственный университет экономики, статистики и информатики

Москва 1999

ЗАДАНИЕ № 23

Продолжительность горения электролампочек (ч) следующая:

750750756769757767760743745759
750750739751746758750758753747
751762748750752763739744764755
751750733752750763749754745747
762751738766757769739746750753
738735760738747752747750746748
742742758751752762740753758754
737743748747754754750753754760
740756741752747749745757755764
756764751759754745752755765762

По выборочным данным, представленным в заданиях №1-30, требуется:

1* Построить интервальный вариационный ряд распределения;

Построение интервального вариационного ряда распределения

Max: 769

Min: 733

R=769-733=36

H= R / 1+3,32 lg n=36/(1+3,32lg100)=4,712

A1= x min – h/2=730,644

B1=A1+h; B2=A2+h

2* Вычислить выборочные характеристики по вариационному ряду:

Среднюю арифметическую (x ср.), центральные моменты (мю к, к=1,4), дисперсию (S^2), среднее квадратическое отклонение (S), коэффициенты асимметрии (Ас) и эксцесса (Ек), медиану (Ме), моду (Мо), коэффициент вариации(Vs);

Вычисление выборочных характеристик распределения

Di=(xi – xср)

Xср = a xi mi/ a mi

X ср = 751,7539

Вспомогательная таблица ко второму пункту расчетов

Выборочный центральный момент К – го порядка равен

M k = ( xi – x)^k mi/ mi

В нашем примере:

Центр момент 10,00
Центр момент 263,94
Центр момент 3-2,85
Центр момент 412123,03

Выборочная дисперсия S ^2 равна центральному моменту второго порядка:

В нашем примере:

S ^2= 63,94

Ввыборочное среднее квадратическое отклонение:

В нашем примере:

S= 7,996

Выборочные коэффициенты асимметрии Ас и эксцесса Fk по формулам

Ac = m3/ S^3;

В нашем примере:

Ас =-0,00557

Ek = m4/ S^4 -3;

В нашем примере:

Ek = -0,03442

Медиана Ме – значение признака x (e), приходящееся на середину ранжированного ряда наблюдений ( n = 2l -1). При четном числе наблюдений( n= 2l) медианой Ме является средняя арифметическая двух значений, расположенных в середине ранжированного ряда: Me=( x(e) + x( e+1) /2

Если исходить из интервального ряда, то медиану следует вычислять по ормуле

Me= a me +h * ( n/2 – mh( me-1) / m me

Где mе – означает номер медианного интервала, ( mе -1) – интервала, редшествующего медианому.

В нашем примере:

Me=751,646

Мода Мо для совокупности наблюдений равна тому значению признака, которому соответствует наибольшая частота.

Для одномодального интервального ряда вычисление моды можно производить по формуле

Mo = a mo + h * ( m mo – m(mo-1))/2 m mo – m( mo-1) – m( mo+1)

Где мо означает номер модального интервала ( интервала с наибольшей частотой), мо-1, мо+1- номера предшествующего модальному и следующего за ним интервалов.

В нашем примере:

Mo = 751,49476

Так как Хср, Mo Me почти не отличаются друг от друга, есть основания предполагать теоретическое распределение нормальным.

Коэффициент вариации Vs = S / x * 100 %= 3.06%

В нашем примере:

Vs= 1,06%

3* Построить гистограмму, полигон и кумуляту.

Графическое изображение вариационных рядов

Для визуального подбора теоретического распределения, а также выявления положения среднего значения (x ср.) и характера рассеивания (S^2 и S) вариационные ряды изображают графически.

Полигон и кумулята применяются для изображения как дискретных, так и интервальных рядов, гистограмма – для изображения только интервальных рядов. Для построения этих графиков запишем вариационные ряды распределения (интервальный и дискретный) относительных частот (частостей)

Wi=mi/n, накопленных относительных частот Whi и найдем отношение Wi/h, заполнив таблицу 1.4.

Интервалы xiWiWhiWi/h

Ai-bi

1 2 3 4 5

4,97-5,08 5,03 0,02 0.02 0,18

5,08-5,19 5,14 0,03 0,05 0,27

5,19-5,30 5,25 0.12 0,17 1,09

5,30-5,41 5,36 0,19 0,36 1,73

5,41-5,52 5,47 0,29 0,65 2,64

5,52-5,63 5,58 0,18 0,83 1,64

5,63-5,74 5,69 0,13 0,96 1,18

5,74-5,85 5,80 0,04 1,00 0,36

– 1,00 –

Для построения гистограммы относительных частот (частостей) на оси абсцисс откладываем частичные интервалы, на каждом из которых строим прямоугольник, площадь которого равна относительной частоте Wi данного i-го интервала. Тогда высота элементарного прямоугольника должна быть равна Wi/h,. Следовательно, позади под гистограммой равна сумме всех носительных частот, т. е. единице.

Из гистограммы можно получить полигон того же распределения. Если середины верхних оснований прямоугольников соединить отрезками прямой.

4* Сделать вывод о форме ряда распределения по виду гистограммы и полигона, а также по значениям коэффициентов Ас и Ек.

4 Анализ графиков и выводы

Гистограмма и полигон являются аппроксимациями кривой плотности (дифференциальной функции) теоретического распределения (генеральной совокупности). Поэтому по их виду можно судить о гипотическом законе распределения.

Для построения кумуляты дискретного ряда по оси абсцисс откладывают значения признака xi, а по оси ординат – накопленные относительные частоты Whi. Для интервального ряда по оси абсцисс откладывают интервалы.

С кумулятой сопоставляется график интегральной функции распределения F(x).

В нашем примере коэффициенты асимметрии и эксцесса не намного отличаются от нуля. Коэффициент асимметрии оказался отрицательным (Ас=-0,005), что свидетельствует о небольшой левосторонней асимметрии данного распределения. Эксцесс оказался также отрицательным (Ек= -0,034). Это говорит о том, что кривая, изображающая ряд распределения, по сравнению с нормальной, имеет несколько более плоскую вершину. Гистограмма и полигон напоминают кривую нормального распределения (рис.1.1 и 1.2.). Все это дает возможность выдвинуть гипотезу о том, что распределение продолжительности горения электролампочек является нормальным.

Примечание: Кумулята, гистронрамма и полигон находятся в приложениях к работе.

5* Рассчитать плотность и интегральную функцию теоретического нормального распределения и построить эти кривые на графиках гистограммы и кумуляты соответственно.

Расчет теоретической нормальной кривой распределения

Приведем один из способов расчета теоретического нормального распределения по двум найденным выборочным характеристикам x и S эмпирического ряда.

При расчете теоретических частот m^тi за оценку математического ожидания (мю) и среднего квадратического отклонения G нормального закона распределения принимают значения соответствующих выборочных характеристик x ср. и S, т. е. (мю)=Xср.= 751,7539; G=S=7,99.

Теоретические частоты находят по формуле: M^i=npi,

Где n – объем; Pi – величина попадания значения нормально распределенной случайной величины в i-й интервал.

Вероятность Pi определяется по формуле

Pi=P(ai<x<=bi)=1/2[ Ф (t2i)- Ф (t1i)],

Где Ф(t)=2\ 2(пи)=интегралу с границами от (0;t) е^x2/2dx – интегральная функция Лапласа – находится по таблице для

T2i=bi-x ср.\ S

T1i=ai-x ср.\S

Таблицы Для вычисления вероятности нормальной кривой распределения

ИнтервалыMiT1T21/2Ф(T1)1/2Ф(T2)Pi
A(i)B(i)
730,644735,3562-2,640-2,0510,49580,4798-0,0080
735,356740,0688-2,051-1,4610,47980,4279-0,0260
740,068744,7806-1,461-0,8720,42790,3078-0,0601
744,780749,49218-0,872-0,2830,30781,11030,4013
749,492754,20435-0,2830,3060,03000,66190,3160
754,204758,916120,3060,8960,11790,31330,0977
758,916763,628110,8961,4850,31330,43060,0587
763,628768,34061,4852,0740,43060,48080,0251
768,340773,05222,0742,6640,48080,49600,0076
Pi*nMi(теор)Mi(теор)/hMi(теор)накоп
-0,800010,0020,0080
-2,595030,0060,0340
-6,005060,0130,0940
40,1250400,0850,4953
31,5950320,0680,8153
9,7700100,0210,9130
5,865060,0120,9716
2,510030,0050,9967
0,760010,0021,0000
100

Сравнение гистограммы и нормальной кривой наглядно показывает согласованность между теоретическим и эмпирическим распределением.

Примечание: Построенные графики находятся в приложениях к работе.

6* Проверить гипотезу о нормальном законе распределения по критерию согласи яПирсона f^2).

Проверка гипотез о нормальном законе распределения

Частоты для проверки соответствия эмпирического ряда распределения нормальному закону используют критерий X^2, основанный на сравнении эмпирических частот mi с теоретическими m^тi, которые можно ожидать при принятии определенной нулевой гипотезы.

Значение X^2набл. – наблюдаемое значение критерия, полученное по результатам наблюдений, равно

К

F^2набл.= (mi-m^тi)

I=1 m^i

Где к – число интервалов (после объединения). M^i – теоретические частоты. Все вспомогательные расчеты, необходимые для вычисления f^2, сведем в таблицу 1.6.

Таблица 1.6.

Вычисление критерия X^2 при проверке нормальности продолжительности горения электролампочек

ИнтервалыMi(Практ)Mi(теор)(Mi-Mi(теор))^2…../Mi(теор)
A(i)B(i)
730,644735,3562291,29
735,356740,06885
740,068744,780613493,88
744,780749,492182190,43
749,492754,20435251004,01
754,204758,9161221813,89
758,916763,628111210,08
763,628768,3406510,14
768,340773,05222
X^2набл13,71

Правило проверки гипотезы заключается в следующем. Определяем по таблице распределения xu – квадрат критическое значение X^2кр.(альфа для числа степеной свободы V =к-3 и заданного уровня значимости альфа. Затем сравниваем X^2кр.

Если X^2 набл.<=X^2кр. , то выдвинутая гипотеза о законе распределения не отвергается (не противоречит опытным данным).

Если X^2 набл. >X^2кр. , то выдвинутая гипотеза о нормальном законе распределения отвергается с вероятностью ошибки a.

Для нашего примера X^2набл.=13,71, a=0,005, V=7-3=4 (число интервалов после объединения стало равным 7) и X^2кр. (0,005; 4) =14,9

Так как X^2набл.<X^2кр., то согласно критерию Пирсона гипотеза о нормальном законе не отвергается с вероятностью ошибки 0,005. Можно сделать вывод, что распределение продолжительности горения электролампочек является нормальным. Что подтверждают графики и значения моды и медианы.


Оценивание параметров и проверка гипотез о нормальном распределении