Основные положения Специальной теории относительности

Постулаты Эйнштейна. Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна.

Первый является естественным обобщением принципа относительности Галлилея с механических на все без исключения явления природы и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения. В пользу этого постулата свидетельствует обширный житейский опыт, показывающий, что находящийся в закрытом помещении (трюме корабля) наблюдатель не в состоянии зарегистрировать факт его движения не только в результате постановки механических опытов, но и с помощью своих ощущений, в основе возникновения которых лежат, как известно, электрохимические процессы.

Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся не только Майкельсоном, но и впоследствии в более точных экспериментах.

Основные выводы релятивистской кинематики. На основе сформулированных постулатов Эйнштейна пересматриваются все основные положения классической кинематики. Делается вывод о том, что понятия одновременности собитий, доительностьи временного промежутка и длины отрезка перестают носить абсолютный характер, становясь зависимыми от выбора системы отсчета, из которой ведется наблюдение (подобно тому, как при классическом описании координаты материальной точки и ее скорость носили относительный характер).

Предсказываемый релятивистской теорией эффект замедления времени состоит в том, что с точки зрения движущегося относительно рассматриваемой системы наблюдателя все интервалы времени (t’), характеризующие поцессы в этой системе (колебания маятников часов, распад нестабильных частиц, старение биологических организмов и т. д.) увеличиваются по сравнению с интервалами, наблюдаемыми в самой этой системе ():

(1) .

Для находящихся же в самой расматриваемой системе наблюдателей происходящие в ней процессы протекают совершенно нормально, а время у движущегося наблюдателя “течет замедленно”.

Эффект сокращения расстояний состоит в уменьшении длин отрезков с точки зрения наблюдателей, перемещающихся вдоль этих отрезков (отрезки, ориентированные перпендикулярно скорости относительного движения сохраняют свою длину неизменной):

(2)

Описанные эффекты проявляются лишь при скоростях, сравнимых со скоростью света и в настоящее время экспериментально зарегистрированы в пучках ультарелятивискских частиц, создаваемых на современных ускорителях. Например, короткоживущие частицы (время жизни , двигаясь с околосветовыми скоростями, вопреки классическим представлениям достигают приемника, удаленного на расстояние, значительно превышающее . С точки зрения неподвижного наблюдателя это явление можно объеснить эффектом замедления времени (1), “удлинняющим” жизнь частицы, с точки зрения наблюдателя, движущегося вместе с частицей – эффектом сокращения расстояния до мишени, “летящей ему навстречу” (2).

Полученные Лоренцем преобразования (10.13) являются чисто математическим следствием рассмотренных соотношений (1) и (2).

С эффектом замедления времени часто ошибочно связывают “парадокс близнецов” – утверждение о том, что двигавшийся с околосветовыми скоростями космический путешественник должен вернуться на Землю менее постаревшим, чем его брат, оставшийся дома. Кажущийся парадокс связан с тем, что всилу относительности равномерного движения с точки зрения космического путешественника эффект замедления времени должен наблюдаться на самой Земле. Реального противоречия не возникает, поскольку для того, чтобы возвратиться домой, космонавт должен в течение определенного времени двигаться с ускорением (тормозить, разворачивать корабль, вновь ускоряться), что нарушает симметрию между ним и наблюдателем на Земле (напомним, что ускорение носит абсолютный характер). Адекватное описание явлений, происходящих в ускоренно движущихся системах отсчета, выходит за рамки СТО и состаяляет предмет). Общей Теории Относительности (ОТО) .

Пространство Минковского. Широко используемая в классической физике векторная форма записи законов природы объясняется не только желанием сэкономить место, но и является математическим отражением факта инвариантности законов природы относительно поворотов выбранной системы координат в пространстве, что, разумеется, требует инвариантной формы их математической записи. Действительно, в изображенных на рис. 12_1 повернутых друг относительно друга системах координат проекции всех векторов на одноименные оси различны, но равенство

(3)

Справедливо в каждой из систем, т. е. остается инвариантным относительно пространственных вращений. Помимо равенств между векторами инвариантами являются скалярные произведения векторов и вычисляемые с их помощью квадраты длин:

(4) .

Координаты же вектора в новой системе отсчета могут быть рассчитаны через координаты в старой с помощью тригонометрии:

(5) .

Последовательное релятивистское описание явлений природы должно быть инвариантным относительно переходов из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Как отмечалось, при таких переходах перестает быть справедливым классический векторный закон сложения скоростей, длина векторов изменяется, а в закон преобразований их компонент (преобразования Лоренца) помимо пространственных переменных входит время:

(6) .

В создавшейся ситуации естественным выходом был переход от несвязанных друг с другом пространственного (трехмерного) и временного (одномерного) описаний явлений к единому описанию событий в четырехмерном пространстве-времени (пространстве Минковского) при помощи четырехвекторов, три компоненты которых совпадают с обыконвенными простарнственными, а последняя дает временное описание. В этом пространстве переход в движущуюся систему отсчета рассматриваентся как обобщение понятия поворота, аналогом трехмерных траекторий являются четырехмерные кривые – мировые линии, инвариантами являются скалярные произведения четырехвекторо, определяемые соотношением:

(7) ,

И интервалы, являющиеся аналогами длин векторов:

(8)

(следствие преобразований Лоренца).

Отличающимся знаками от обычного “трехмерного” определения. В связи с этим геометрическое свойства псевдоевклидового пространства Минковского существенно отличаются от привычных свойств евклидового пространства.

Световой конус. Мировыми линиями свтовых лучей, выходящих из одной точки пространства Минковского (т. е. одновременно испущенных из одной точки трехмероного пространства) являются прямые, составляющие с осью ct одинаковый угол и образующие световой конус (рис. 12_2).. Мировые линии всех тел могут лежать лишь внутри светового конуса, поскольку допустимые скорости движения не могут превосходить с. Лежащие в верхней части светового конуса точки пространства Минковского образуют абсолютное будущее (множество событий, на которые в принципе можно повлиять, находясь в вершине конуса), нижняя часть светового конуса соответствует абсолютному прошлому (множество событий, которые в могли повлиять на происходящее в вершине конуса). Вне светового конуса лежат абсолютно недоступные событмя (т. е. невлияющие и независимые от происходящего в вершине конуса).

Релятивистская динамика строится как обобщение классической в соответствии с требованиями релятивистской инвариантности. Важнейшую роль в ней играет четырехвектор энергии-импульса, получающийся из четырехвектора скорости домножением на инвариант массу покоя (массу тела в системе отсчета, где оно покоится):

(9)

Пространственные компоненты этого четырехвектора весьма схожи с классическим импульсом mV. Учитывая эту аналогию иногда вводят понятие релятивистской массы, величина которой возрастает с увеличением скорости движения тела относительно неблюдателя:

(10) .

С учетом (10) релятивистское уравнение движения в привычных трехмерных обозначениях принимает вид, аналогичный второму закону Ньютона в импульсной формулировке:

(11)

Возрастание релятивистской массы является одним из оснований утверждения о невозможность разогнать тело с ненулевой массой покоя до скорости света: по мере увеличения его скорости под действием постоянной силы ускорение начнет уменьшаться и стремиться к нулю при .

Эффект возрастания релятивистской массы при приближении скорости к предельной наблюдается экспериментально в ускорителях ультарелятивистских частиц сиххрофазотронов, принцип действия которых аналогичен циклотронным ускорителям. Основное отличие состоит в том, что при больших скоростях разгоняемых частиц радиусы их орбит

(12)

И периоды вращения

(13)

Начинают существенно превосходить результаты расчетов по классическим формулам. Т. о. в настоящее время результаты СТО используются не только в науке, но и в инженерных расчетах.

Смысл четвертой компоненты четырехвектора энергии-импульса можно установить на основе сравнения ее произведения на скорость света с классическим выражением для кинетической энергии:

(12)

Принцип соответствия позволяет предположить, что величина

(13)

Представляет собой релятивистское выражение для энергии тела, связанной с его движением. Однико, даже в случае нулевой скорости, согласно (13) лубое толо обладает энергией покоя, пропорциональной его массе. Эта колоссальная (по сравненью с характерными для классической теории масштабами) энергия до создания теории относительности оставалось “незамеченной” из-за того, что в подавляющем большинстве процессов суммарная масса составляющих систему объектов остается практически неизменной. Открытие энергии покоя имело громадное значение для развития энергетики и военной техники.

Релятивистская электродинамика. Создание релятивистской теории позволило переписать систему уравнений Максвелла в весьма элегантной и краткой четырехмерной форме:

(14) ,

Где

(15)

– релятивистски инвариантный четырехмерный аналог оператора Лапласа – оператор Д’Аламбера,

(16)

-четырехмерный потенциал, состоящий из трех компонент векторного потенциала магнитного поля и скалярного потенциала электрического, – четырехвектор плотности тока, получающийся домножением четырехвектора скорости на релятивистски-инвариантную величину электрического заряда.

Излучение электромагнитных волн. Решением Уравнения (14) в пустом пространстве являются электромагнитные волны, распространяющиеся в пустом пространстве с инвариантной относительно преобразований Лоренца скоростью с. Рассмотрение уравнения (14) с учетом зарядо и токов приводит к выводу, что электромагнитные волны создаются электрическими зарядами при их ускоренном движении. При этом электромагнитное поле, создаваемое точечным зарядом на больших расстояниях от него (рис. 12_3) имеет вид

(17) ,

Т. е. убывает гораздо медленнее, чем статические поля. Это свойство обуславливает удобство использования переменных электромагнитных полей в целях связи.

Происхождение силы Лоренца. Существование зависящей (вопреки требованием классической теории) от скорости относительно наблюдателя магнитной силы Лоренца в релятивистской теории находит весьма “неожиданное” объяснение. Сами магнитные взаимодействия и описывающая их сила являются “лишними” в теории электричества, т. е. адекватное описание реальности возможно и бех их использования на основе закона Кулона и релятивистских формул преобразования физических величин при переходах из одной системы отсчета в другую. Релятивистских эффект изменения силы взаимодействия между двумя зарядами с точки зрения движущегося наблюдателя был замечен экспериментально задолго до создания теории относительности и отнесен за счет существования “новой” магнитной силы, которую пришлось наделить весьма странными свойствами. Если бы теория магнетизма создавалась в наши дни, “магнитные взаимодейстивя” были бы предсказаны теоретически как релятивистская поправка к электростатическим.


Основные положения Специальной теории относительности