Побудова споживчої функції. Оцінка параметрів системи економетричних рівнянь

Курсова робота

З дисципліни “Економетрія “

Тема “Побудова споживчої функції дослідження мультиколінеарності між пояснюючими змінними. Оцінка параметрів системи економетричних рівнянь. Оцінка параметрів регресійної моделі з автокорельованими “

ЗМІСТ

ВСТУП

ЗАДАЧА 1. ПОБУДОВА СПОЖИВЧОЇ ФУНКЦІЇ

ЗАДАЧА 2. ПРИКЛАД ДОСЛІДЖЕННЯ МУЛЬТИКОЛІНЕАРНОСТІ МІЖ ПОЯСНЮЮЧИМИ ЗМІННИМИ

ЗАДАЧА 3. ОЦІНКА ПАРАМЕТРІВ РЕГРЕСІЙНОЇ МОДЕЛІ З АВТОКОРЕЛЬОВАНИМИ ЗАЛИШКАМИ

ЗАДАЧА 4. ОЦІНКА ПАРАМЕТРІВ СИСТЕМИ ЕКОНОМЕТРИЧНИХ РІВНЯНЬ

ВИСНОВКИ

ВСТУП

Економетрія є галуззю економічної науки, яка вивчає методи кількісного вимірювання взаємозв’язків між економічними показниками. Метою розрахункової роботи є вивчення методів оцінки параметрів економетричних моделей. Застосувати метод найменших квадратів для оцінювання параметрів економетричної моделі можна лише в разі виконання певних умов, які далеко не завжди виконуються на практиці для вихідної економічної інформації. Особливості перевірки цих умов також розглядаються в розрахунковій роботі.

Сьогодні практично повністю сформовано коло задач і методів, які належать економетрії. Порівняно з підходом, притаманним математичній статистиці, власне економетричний підхід до задач, які вивчаються зокрема в розрахунковій роботі, виявляється не в тому, що приклади і термінологія беруться з економічної галузі, а насамперед у тій увазі, яка приділяється питанню про відповідність вибраної моделі економічному об’єкту. В розрахунковій роботі розглядаються методи побудови економетричної моделі в цілковитій відповідності з особливостями тієї економічної інформації, на базі якої вони будуються.

ЗАДАЧА 1. ПОБУДОВА СПОЖИВЧОЇ ФУНКЦІЇ

Дані про роздрібний товарообіг і доходи населення в умовних грошових одиницях в деякій країні за 1994-2005 рр. представлені в табл.1.1.

Таблиця 1.1 – Роздрібний товарообіг і доходи населення

Рік

Роздрібний товарообіг,

Млн. умов. од.,

Доходи населення,

Млн. умов. од.,

1994218233
1995244260
1996249278
1997265306
1998272292
1999301310
2000323347
2001325337
2002353361
2003365402
2004385434
2005429442

Необхідно: розрахувати методом найменших квадратів оцінки параметрів споживчої функції; перевірити достовірність вибраної лінії регресії методом аналізу дисперсій; оцінити лінійний коефіцієнт кореляції; визначити довірчі інтервали для , та ; побудувати на одному графіку вихідні дані та знайдену лінію регресії.

Зв’язок між роздрібним товарообігом і доходом населення носить прямолінійний характер, тому споживча функція має вигляд [1]:

, (1.1)

Де – роздрібний товарообіг ;

– особисті доходи громадян ;

– константа ;

– кутовий коефіцієнт кореляції ;

– стохастична складова (залишки ).

Для оцінювання параметрів та в рівнянні (1.1) скористаємось методом найменших квадратів (МНК). Запишемо систему нормальних рівнянь [1]:

(1.2)

. (1.3)

Для знаходження Та запишемо рівняння оцінок :

, (1.4)

, (1.5)

Де – моменти першого порядку;

– моменти другого порядку.

, (1.6)

, (1.7)

, (1.8)

, (1.9)

. (1.10)

Для зручності розрахунку моментів побудуємо таблицю 1.2.

Таблиця 1.2 – Проміжні розрахунки

Рік
1994218475242335428950794-100,510100,25
1995244595362606760063440-73,55402,25
1996249620012787728469222-55,53080,25
1997265702253069363681090-27,5756,25
1998272739842928526479424-41,51722,25
1999301906013109610093310-23,5552,25
200032310432934712040911208113,5182,25
20013251056253371135691095253,512,25
200235312460936113032112743327,5756,25
200336513322540216160414673068,54692,25
2004385148225434188356167090100,510100,25
2005429184041442195364189618108,511772,25
Всього3729120392540021383796128975749129

; (1.11)

; (1.12)

(1.13)

(1.14)

, (1.15)

, (1.16)

. (1.17)

Таким чином, маємо споживчу функцію :

. (1.18)

Перевірка достовірності підібраної лінії регресії методом аналізу дисперсій за критерієм Фішера [1]:

, (1.19)

Де – обгрунтована складова дисперсії ;

– необгрунтована складова дисперсії ;

– загальна дисперсія.

, (1.20)

Де – емпіричне значення ;

– теоретичне значення ;

– середнє значення .

, (1.21)

. (1.22)

Виходячи з даних міркувань :

(1.23)

Таблиця 1.3 – Таблиця аналізу дисперсій

Компоненти дисперсіїЧисло ступенів свободи,Сума квадратів,Середнє значення суми квадратів,
Регресія1
Відхилення від регресії
Всього

Таблиця 1.4 – Таблиця аналізу дисперсій стосовно даних задачі

Компоненти дисперсіїЧисло ступенів свободи,Сума квадратів,Середнє значення суми квадратів,
Регресія1,0043324,4043324,40
Відхилення від регресії10,001813,85181,39
Всього11,0045138,25

, (1.24)

. (1.25)

Таким чином :

, (1.26)

Де (1,10) – число ступенів свободи відповідно чисельника і знаменника.

. (1.27)

Висновок: > , 238,85 > 4,96 тобто розходження обгрунтованої та необгрунтованої складових дисперсії носить не випадковий характер і взаємозв’язок між рівнем споживання та рівнем доходу тісний.

Оцінку лінійного коефіцієнту кореляції Здійснимо за допомогою формули [1]:

, (1.28)

. (1.29)

Висновок: Високий лінійний коефіцієнт кореляції свідчить про тісний взаємозв’язок між роздрібним товарообігом та рівнем доходу.

Побудуємо довірчі інтервали для Та . Побудова довірчого інтервалу для кутового коефіцієнту кореляції Здійснюється за формулою:

, (1.30)

Де – деяка похибка при оцінці ; – довірчий коефіцієнт при рівні імовірності Та Ступенях свободи. Знаходиться за таблицями -розподілу Ст’юдента.

Приймається якісна гіпотеза, відповідно до якої . Формула для розрахунку Має вигляд [1]:

, (1.31)

(1.32)

; (1.33)

; (1.34)

. (1.35)

Висновок: Результати регресії не відповідають якісній гіпотезі, згідно до якої 0‹β‹1, тому робимо висновок про недостатню точність оцінки b.

Побудова довірчого інтервалу для коефіцієнта Здійснюється за формулою [1]:

, (1.36)

Де – деяка похибка при оцінюванні а ;

, (1.37)

.(1.38)

; (1.39)

(1.40)

Висновок: До інтервалу входять як від’ємні, так і додатні значення, отже при 95% імовірності похибка при оцінюванні Не істотно відмінна від нуля. Побудова довірчого інтервалу R для лінійного коефіцієнту кореляції r здійснюється за формулою [1]:

, (1.41)

Де Sr – деяка похибка при оцінці r.

– деяка функція при рівні імовірності Р, коефіцієнті кореляція r та деякій точковій оцінці ρ. Оскільки ρ не можна визначити, а, значить, і значення всієї функції невідоме, необхідно скористатися Z-перетворенням Фішера. Для цього вводимо нову змінну zr :

(1.42)

Розподіл zr приблизно співпадає з нормальним розподілом.

Тоді за таблицею Z-перетворення Фішера z0,997 = 3,2957.

Знаходимо

,(1.43)

.(1.44)

Визначаємо при 95% рівні імовірності довірчі інтервали для zρ :

(1,45)

(1,46)

(1,47)

Скориставшись знову таблицями Z-перетворення Фішера, знайдемо тепер граничні значення для r:

Z(1,547) ≈ 0,991;(1.48)

Z(3,033) ≈1;(1.49)

0,991 ≤ r ≤ 1.(1.50)

Висновок: Оцінка лінійного коефіцієнту кореляції є досить точною, а значить, тіснота зв’язку між роздрібним товарообігом та рівнем доходу громадян є дуже високою.

В кінці рішення задачі побудуємо на одному графіку вихідні дані та лінію регресії (рис.1.1):

Рис. 1.1 – Вихідні дані та лінія регресії

Побудована споживча функція має вигляд: . Розходження обгрунтованої та необгрунтованої складових дисперсії носить не випадковий характер і взаємозв’язок між рівнем споживання та рівнем доходу тісний. Високий лінійний коефіцієнт кореляції свідчить про тісний взаємозв’язок між роздрібним товарообігом та рівнем доходу. Так як знайдений інтервал має вигляд , тому результати регресії не відповідають якісній гіпотезі, згідно якої тому робимо висновок про недостатню точність оцінки b. До довірчого інтервалу входять як від’ємні, так і додатні значення, отже при 95% імовірності похибка при оцінюванні не істотно відмінна від нуля.

ЗАДАЧА 2. ПРИКЛАД ДОСЛІДЖЕННЯ МУЛЬТИКОЛІНЕАРНОСТІ МІЖ ПОЯСНЮЮЧИМИ ЗМІННИМИ

Статистична сукупність спостережень за пояснюючими змінними моделі прибутку підприємства представлена в табл.2.1.

Таблиця 2.1 – Статистична сукупність спостережень за пояснюючими змінними моделі прибутку підприємства

МісяцьПрибуток на місяць, грн.,

Фондовіддача,

Грн.,

Продуктивність

Праці, грн.,

Питомі інвестиції, грн.,
16730623
260351627
34329725
467161625
57532728
666251416
745321117
869271126
941141028
1072201528
1177221323
1263351129
1352361326
1472211729
1573361023
1655381531
1781341733
1875391425
1970432125
2080292734

Обчислимо середні значення та стандартні відхилення пояснюючих змінних . Для цього можна скористатись стандартними функціями MS Excel. В майстрі функцій знайдемо категорію “статистичні ” і в ній функції “СРЗНАЧ ” та “СТАНДОТКЛ “.

Дані величини можна також розрахувати за формулами [1]:

, (2.1)

, (2.2)

Де – середнє значення -тої пояснюючої змінної ;

– індивідуальне значення j – тої пояснюючої змінної;

– номер пояснюючої змінної;

– номер точки спостереження (місяця);

– стандартне відхилення -тої пояснюючої змінної;

– число спостережень.

Додаткові розрахунки наведено в таблиці 2.2.

Таблиця 2.2 – Проміжні розрахунки

Місяць
16730623
260351627
343291125
467161625
57532728
666251416
745321117
869271126
941141028
1072201528
1177221323
1263351129
1352361326
1472211729
1573361023
1655381531
1781341733
1875391425
1970432125
2080292734
Всього1303593275521
Середнє значення65,1529,6513,7526,05
Стандартне відхилення, δ12,137,924,754,48

Нормалізуємо пояснюючі змінні. Серед статистичних функцій MS Excel знайдемо функцію “НОРМАЛІЗАЦІЯ ” та нормалізуємо .

Для цього можна також скористатись формулою [1]:

. (2.3)

0,044215142-1,633365935-0,681149827
0,6758600290,4742030130,212161422
-0,082113835-0,579581461-0,234494203
-1,7243905420,474203013-0,234494203
0,296873097-1,422609040,435489234
-0,5874297450,052689224-2,244444513
0,296873097-0,579581461-2,021116701
-0,33477179-0,579581461-0,011166391
-1,977048497-0,7903383560,435489234
-1,2190746320,2634461190,435489234
-0,966416677-0,158067671-0,681149827
0,675860029-0,5795814610,658817046
0,802189007-0,158067671-0,011166391
-1,0927456550,6849599080,658817046
0,802189007-0,790338356-0,681149827
1,0548469620,2634461191,105472671
0,5495310520,6849599081,552128295
1,1811759390,052689224-0,234494203
1,6864918491,527987488-0,234494203

Транспонуємо матрицю (нормалізовану) в матрицю

0,04420,6759-0,0821-1,72440,2969-0,58740,2969
-1,63340,4742-0,57960,4742-1,42260,0527-0,5796
-0,68110,2122-0,2345-0,23450,4355-2,2444-2,0211
-0,3348-1,9770-1,2191-0,96640,67590,8022-1,0927
-0,5796-0,79030,2634-0,1581-0,5796-0,15810,6850
-0,01120,43550,4355-0,68110,6588-0,01120,6588
0,80221,05480,54951,18121,6865-0,0821
-0,79030,26340,68500,05271,52802,7925
-0,68111,10551,5521-0,2345-0,23451,7755

Перемножимо матриці та :

191,6041383571,025534341
1,604138357198,107441683
1,0255343418,10744168319

Знайдемо кореляційну матрицю R.

Для знаходження кореляційної матриці R необхідно кожний елемент матриці Помножити на (у нашому випадку ):

10,0844283350,053975492
0,08442833510,426707457
0,0539754920,4267074571

Знайдемо визначник матриці ).

Для знаходження необхідно серед математичних функцій MS Excel знайти функцію “МОПРЕД”. Скориставшись нею, дістанемо: R = 0,811768312. Оскільки наближається до нуля, то в масиві пояснюючих змінних може існувати мультиколінеарність.

Прологарифмуємо визначник матриці : -0,208540309.

Обчислимо критерій Пірсона за формулою [1]:

(2.9)

(2.5)

Знайдене значення порівняємо з табличним значенням , коли маємо ступенів свободи та при рівні значущості .

Оскільки , то в масиві пояснюючих змінних (продуктивність праці, питомі інвестиції та фондовіддача) мультиколінеарність не існує.

Обчислимо Критерій. Для визначення Критеріїв необхідно знайти матрицю , яка є оберненою до матриці :

1,007579051-0,075633144-0,022111348
-0,0756331441,228289687-0,520038033
-0,022111348-0,5200380331,223097577

Безпосередньо Критерій обчислюється за формулою:

,(2.6)

Де – діагональний елемент матриці .

; (2.7)

; (2.8)

; (2.9)

Обчислені критерії порівнюються з табличним значенням , коли є ступенів свободи та при рівні значущості .

Визначимо частинні коефіцієнти кореляції .

Частинні коефіцієнти кореляції показують тісноту зв’язку між двома пояснюючими змінними за умови, що всі інші змінні не впливають на цей зв’язок і обчислюються за формулою [1]:

.(2.10)

(2.11)

(2.12)

(2.13)

Отже, спираючись на здобуті нами значення окремих (частинних) коефіцієнтів кореляції, можна сказати, що зв’язок між фондовіддачею та продуктивністю праці є тісним, якщо не враховувати вплив питомих інвестицій, зв’язок між фондовіддачею та питомими інвестиціями є слабким, якщо не брати до уваги вплив продуктивності праці. Зв’язок між продуктивністю праці та питомими інвестиціями є тісним, якщо не враховувати фондовіддачу.

Визначимо Критерій.

Ці критерії застосовуються для визначення мультиколінеарності двох пояснюючих змінних і обчислюються за формулою [1]:

.(2.14)

;(2.15)

;(2.16)

;(2.17)

Обчислені Критерії порівнюються з табличним значенням , коли маємо ступенів свободи та при рівні значущості .

Оскільки , то продуктивність праці та фондовіддача є відповідно мультиколінеарними між собою; , , тому відповідно продуктивність праці та питомі інвестиції не є мультиколінеарними між собою.

Висновок: Дослідження, проведені за алгоритмом Фаррара-Глобера показали, що мультиколінеарність між пояснюючими змінними даного прикладу існує. Отже, для того, щоб можна було застосувати метод 1МНК для оцінювання параметрів моделі за цією інформацію, необхідно в першу чергу звільнитися від мультиколінеарності.

ЗАДАЧА 3. ОЦІНКА ПАРАМЕТРІВ РЕГРЕСІЙНОЇ МОДЕЛІ З АВТОКОРЕЛЬОВАНИМИ ЗАЛИШКАМИ

Статистичні дані про залежність витрат на рекламу від прибутку на деякому підприємстві протягом 15 років наведені в табл.3.1.

Таблиця 3.1 – Статистичні дані про залежність витрат на рекламу від прибутку

РікПрибуток підприємства, млн. грн., Витрати на рекламу, тис. грн.,
118,0098,00
25,0073,00
313,0049,00
45,0082,00
515,0075,00
693,0070,00
714,0056,00
850,0080,00
914,0068,00
102,0045,00
117,0090,00
1249,0078,00
133,0062,00
1495,0088,00
156,0095,00

Необхідно: оцінити параметри рівняння взаємозв’язку між обсягом витрат на рекламу і обсягом отриманого прибутку, вважаючи, що величина витрат на рекламу залежить від розміру отриманого прибутку; перевірити наявність автокореляції залишків, при наявності авторегресійного процесу до оцінки параметрів регресії застосувати метод Ейткена. Для знаходження оцінок параметрів лінійної регресії скористаємось формулою [1]:

.(3.1)

Розрахуємо матрицю моментів :

. (3.2)

Розрахуємо вектор:

. (3.3)

Оцінки параметрів будуть дорівнювати:

. (3.4)

Економетрична модель має вигляд:

,(3.5)

. (3.6)

На основі економетричної моделі визначимо вектор збурення , який є різницею між розрахованим та фактичним Значенням витрат на рекламу.

(3.7)

Розрахуємо критерій Дарбіна-Уотсона:

,(4)

Висновок: Оскільки критерій Дарбіна-Уотсона належить інтервалу [1,36; 2,64], то можна говорити про відсутність автокореляції. Подальше проведення розрахунків за критерієм фон-Неймана та застосування методу Ейткена є недоцільним.

ЗАДАЧА 4 ОЦІНКА ПАРАМЕТРІВ СИСТЕМИ ЕКОНОМЕТРИЧНИХ РІВНЯНЬ

Оцінити параметри економетричної моделі, що складається з двох рівнянь:

(4.1)

Перше рівняння відображає залежність грошового обігу від оборотності грошей та грошових доходів населення . У другому рівнянні оборотність грошей визначається у вигляді функції від грошового обігу та розміру вкладу в ощадбанк . Між двома змінними – грошовим обігом та оборотністю грошей – існують одночасні зв’язки, так як кожна з них в одному рівнянні виступає як факторна змінна, у другому – як результативна.

Введемо позначення:

грошовий обіг ;

Оборотність грошей ;

Грошові доходи населення ;

Розмір вкладу в ощадбанк .

Дані про , , , представлено у вигляді відхилень від відповідних середніх у табл.4.1.

Таблиця 4.1 – Відхилення змінних , , , від їх середніх значень

1-1013011
2110-112
324210
4-3215
5811910
6419-2
79-13-4
812141
91508-8
108-25-6

Для оцінки економетричної моделі застосуємо метод 1МНК спочатку до першого рівняння системи, а потім до другого.

Запишемо рівняння №1 у вигляді множинної регресії:

(4.2)

Перша цифра біля коефіцієнтів та означає номер рівняння, друга – номер змінної. Запишемо формули для оцінки параметрів регресії:

.(4.3)

; .(4.4)

Проведемо операції:

(4.5)

, .(4.6).(4.7)

,(4.8)

.(4.9)

Підставивши отримані результати, будемо мати МНК-оцінку 1-го рівняння:

. = ,(4.10)

.(4.11)

Скористаємось методом 1МНК до другого рівняння системи, яке запишемо у наступному вигляді:

(4.12)

,(4.13)

(4.14)

.(4.15)

,(4.16)

.(4.17)

Підставивши отримані результати, будемо мати МНК-оцінку 2-го рівняння:

. = ,(4.18)

.(4.19)

Таким чином, запропонована у загальній формі модель має такий вигляд:

,(4.20)

.(4.21)

ВИСНОВКИ

У першій задачі розрахункової роботи за допомогою класичного методунайменших квадратів (МНК) були отримані оцінки параметрів споживчої функції. Перевірка достовірності вибраної лінії регресії методом аналізу дисперсій показала, що розходження обгрунтованої та необгрунтованої складових дисперсії носить випадковий характер і взаємозв’язок між рівнем споживання та рівнем доходу є тісним. Високий лінійний коефіцієнт кореляції свідчить про тісний взаємозв’язок між роздрібним товарообігом та рівнем доходу. Оцінка лінійного коефіцієнту кореляції є досить точною (0,991 ≤ r ≤ 1), а значить, тіснота зв’язку між роздрібним товарообігом і рівнем доходу громадян є дуже високою. Знайдений довірчий інтервал для параметра b має вигляд (). А це означає, що результати регресії не відповідають якісній гіпотезі, згідно до якої 0‹β‹1, тому робимо висновок про недостатню точність оцінки b. До довірчого інтервалу параметра a входять як від’ємні, так і додатні значення (), аотже при 95% імовірності похибка при оцінюванні а не істотно відмінна від нуля.

У другій задачі розрахункової роботи були проведені дослідження алгоритмом Фарара-Глобера, які показали, що мультиколінеарність між пояснюючими змінними досліджуваної економетричної моделі існує. Для того, щоб можна було застосувати класичний МНК для оцінювання параметрів моделі вихідною інформацію, необхідно звільнитися від мультиколінеарності.

У третій задачі розрахункової роботи були отримані оцінки параметрів рівняння взаємозв’язку між обсягом витрат на рекламу і обсягом отриманого прибутку. Перевірка наявності автокореляції залишків за критеріями Дарбіна-Уотсона показала, що автокореляції залишків в даному прикладі не існує.

У четвертій задачі за допомогою класичного МНК були отримані оцінкипараметрів економетричної моделі, що описується системою рівнянь:

,

.


Побудова споживчої функції. Оцінка параметрів системи економетричних рівнянь