Пределы

Предел.

Число А наз-ся пределом последоват-ти Xn если для любого числа Е>0, сколь угодно малого, $ N0 , такое что при всех n>N0 будет выполн-ся нер-во |Xn – A|<E. limn®¥ Xn =A. – E<Xn-A<E => A-E<Xn<A+E.

Число А явл-ся пределом послед-ти Xn, если для любой Е-окрестности (.)А сущ-ет конкретное число N0 , для кот. любые точки >N0 попадают в Е-окрестность (.)А.

Св-ва послед-ти, имеющей предел:

1.если послед-ть имеет предел, то он единственный.

Док-во:предп, что пределы различны: lim Xn=a, lim Xn=b (n®¥), тогда |a-b|=|a-Xn+Xn-b|. Из lim Xn=a (n®¥) => ” E/2 $ N1 “n>N1 |a-Xn|<E/2 Из lim Xn=b (n®¥) => ” E/2 $ N2 “n>N2 |Xn-и|<E/2 N0 =max(N1 ;N2 ), n>N0 . |a-b|=|a-Xn+Xn-b|£|a-Xn|+|Xn-b|<E/2+E/2=E => |a-b|=0 => a=b.

2.теорема о сжатой переменной. n>N1 Xn³Zn³Yn $ limXn = lim Yn = a (n®¥) => $ lim Zn=a (n®¥)

Док-во:1. из того, что $ lim Xn=a (n®¥) => n>N2 |Xn-a|<E, a-E<Xn<a+E. 2. Из $ lim Yn=a (n®¥) => n>N3 , a-E<Yn<a+E. 3. N0 =max(N1 ,N2 ,N3 ). При всех n>N0 Xn³Zn³Yn. a+E>Xn³Zn³Yn>a-E => lim Zn=a (n®¥)

Функция y=f(x) наз-ся ограниченной в данной обл-ти изменения аргумента Х, если сущ-ет положит число М такое, что для всех значений Х, принадлежащих рассматриваемой обл-ти, будет выполн-ся нер-во |f(x)|£M. Если же такого числа М не сущ-ет, то f(x) наз-ся неограниченной в данной обл-ти.

Бесконечно малая величина.

Величина Xn наз-ся бесконечно малой при n®¥, если lim Xn = 0 (n®¥). “E>0, N0 , n>N0 , |Xn|<E.

Свойства б. м. величин :

1.Сумма б. м. величин есть величина б. м.

Док-во:из Xn – б. м. => ” E/2 $N1 , n>N1 |Xn|<E/2

Из Yn-б. м.=>” E/2 $N2 , n>N2 |Yn|<E/2, N0 =max(N1 ,N2 ), N>N0 ,|Xn±Yn|£|Xn|+|Yn|<E/2+E/2=E=>lim(Xn±Yn)=0 (n®¥). Теорема справедлива для любого конечного числа б. м. слагаемых.

2.Произведение ограниченной величины на б. м. величину есть величина б. м.

Док-во:Xn – огр. величина => $ K, |Xn| £ K,

Yn – б. м. => ” E/K $N0 n>N0 |Yn|<E/K.

|Xn*Yn|=|Xn||Yn|<K*E/K=E

3.Достаточный признак существования предела переменной величины: если переменная величина Xn имеет конечный предел А, то эту переменную величину можно представить в виде суммы этого числа А и б. м. величины. $ lim Xn=a (n®¥) => Xn=a+Yn, Yn – б. м.

Док-во:Из lim Xn=a (n®¥) => “E $N0 n>N0 |Xn-a|<E

Xn-a=Yn – б. м. => Xn=a+Yn. Справедливо и обратное: если переменную величину можно представить в виде суммы Xn=a+Yn (Yn – б. м.), то lim Xn=a (n®¥).

Бесконечно большая величина

Xn – бесконечно большая n®¥, если “M>0 $N0 , n>N0 , |Xn|>M => M<Xn<-M. lim Xn=¥ (n®¥).

Свойства б. б. величин:

1.Произведение б. б. величин есть величина б. б.

Из Xn – б. б. =>”M $N1 , n>N1 |Xn|>M

Из Yn – б. б. => “M $ N2 , n>N2 |Yn|>M

N0 =max(N1 , N2 ) => |Xn*Yn|=|Xn||Yn|>MM=M2 >M

Lim XnYn=¥ (n®¥).

2.Обратная величина б. м. есть б. б. Обратная величина б. б. есть б. м. lim Xn=¥ (n®¥) – б. б. Yn=1/Xn – б. м. Из lim Xn=¥ => M=1/E $N0 , n>N0 |Xn|>M =>n>N0 .

|Yn|=1/|Xn|<1/M=E =>Yn – б. м. => lim Yn=0 (n®¥).

3.Сумма б. б величины и ограниченной есть б. б. величина.

Основные теоремы о пределах:

1. lim Xn=a, lim Yn=b => lim (Xn±Yn)=a±b (n®¥)

Док-во:lim Xn=a => Xn=a+an ; lim Yn=b => Yn=b+bn ;

Xn ± Yn = (a + an ) ± (b + bn ) = (a ± b) + (an ± bn ) => lim(Xn±Yn)=a±b (n®¥).

2. limXnYn = lim Xn * lim Yn (n®¥).

3. lim Xn=a, lim Yn=b (n®¥) => lim Xn/Yn = (lim Xn)/(lim Yn) = a/b.

Док-во:Xn/Yn – a/b = (a+an )/(b+bn ) – a/b = (ab+an b-ab-abn )/b(b+bn ) =(ban – abn )/b(b+bn )=gn => Xn/Yn=a/b+gn => $ lim Xn/Yn = a/b = (lim Xn)/(lim Yn) (n®¥).

Пределы ф-ии непрерывного аргумента.

Число А наз-ся пределом ф-ии y=f(x) при х®x0 , если для любого Е>0 сколь угодно малого сущ-ет такое число d>0, что при “x будет выпол |x-x0 |<d, будет выполняться нер-во |f(x) – A|<E или “x выпол x0 – d<x<x+d=> A-E<f(x)<A+E.

Lim x ® x0 f(x)=A

Ф-ия y=f(x)наз-ся бесконечно большой при x ® x0 если для “М>0 сколь угодно большого $d>0, что “x |x-x0 |<d будет выполняться нер-во |f(x)|>M, “x x0 – d<x<x0 +d, – M>f(x)>M.

Lim f(x)= ¥ (x ® x0 ).

Число А наз-ся пределом y=f(x) x ® ¥ , если для любого Е>0 можно найти число К, “x |x|>K |f(x)-A|<E.

I замечательный предел.

Рассмотрим окр-ть радиуса 1; обозн угол МОВ через Х.

Sтреуг МОА< Sсект МОА<Sтреуг СОА.

Sтреуг МОА=0,5ОА*МВ=0,5*1*sin=0.5sinX.

Sсект МОА=0,5*ОА*АМ=0,5*1*х=0,5х.

Sтреуг СОА=0,5*ОА*АС=0,5*1*tgX=0,5tgX.

SinX<x<tgX {разделим все члены на sinX}

1<x/sinX<1/cosX или 1>(sinX)/x>cosX.

Lim cosX=1, lim 1=1 (x®0) =>lim (sinX)/x=1.

Следствия:

1. limx®0 (tgX)/x=lim(sinX)/x*1/cosX=

=lim(sinX)/x*lim (1/cosX)=1;

2.limx®0 (arcsinX)/x={arcsinX=t, sint=x, t®0}=

=limt®0 t/sint=1;

3. limx®0 (sin ax)/bx = lim (aSin ax)/(ax)b=

=a/b limax®0 (sin ax)/ax=a/b.

II замечательный предел.

Limn®¥ (1+1/n)n =?

Бином Ньютона: (a+b)n =an +nan-1 b+(n(n-1)an-2 b2 )/2!+… +(n(n-1)(n-2)(n-3)an-4 b4 )/4!+…+bn.

(1+1/n)n =1+n1/n+n(n-1)/2!n2 +n(n-1)(n-2)/3!n3 +…+1/nn = =2+1/2!(1-1/n)+1/3!(1-1/n)(1-2/n)+1/4!(1-1/n)(1-2/n)(1-3/n)+…+1/nn ={послед-ть возрастающая}< 2+0.5(1-1/n) +1/22 (1-1/n)(1-2/n)+1/23 (1-1/n)(1-2/n)(1-3/n)+1/2n < 2+0.5+1/22 +1/23 +…+1/2n =2+0.5(1-1/2n )/(1-0.5)=2+1-1/2n =3-1/2n <3.

2£(1+1/n)n <3 => $ limn®¥ (1+1/n)n =e.

Следствия :

1.limx®+¥ (1+1/x)x =e. Док-во: n£x£n+1 =>1/n³1/x³1/(n+1), 1/n+1 ³ (1/x)+1 ³ 1/(n+1) + 1, (1/n+1)x ³(1/x+1)x ³(1+1/(n+1))x

(1/n+1)n+1 ³(1+1/x)x ³(1+1/(n+1))n limn®¥ (1+1/n)n (1+1/n)=e*1=e,- limn®¥ (1+1/(n+1))n+1 *1/(1+1/(n+1))=e*1/1=e => $limx®+¥ (1+1/x)x =e.

Непрерывность.

-фун. y=f(x) наз. непрерывной в точке х0 , если сущ. предел фун. y=f(x) при х®х0 равный значению фун f(x0 ).limf(x)=f(x0 )

Условия:

1. f(x) – опред ф-ия; 2. $limx®x0-0 f(x) $limx®x0+0 f(x) – конечные пределы; 3. limx®x0- f(x)=limx®x0+ f(x);

4. limx®x0± f(x)=f(x0 ).

Если Х0 т-ка разрыва и выполн усл-ие 2, то Х0 – 1 род

Если Х0 – 1 род и выполн усл-ие 3, то разрыв устран.

Если Х0 т-ка разрыва и не вып усл-ие 2, то Х0 – 2род.

Св-ва непрерывности в точке:

1.Если фун f1 (x) и f2 (x) непрерывны в точке х0 , то сумма (разность) y(х)=f1 (x)±f2 (x), произведение у(х)=f1 (x)*f2 (x), а также отношение этих фун у(х)=f1 (x)/f2 (x), есть непрерывная фун в точке х0 .

Док-во (суммы): По определению получ limх®х0 f1 (x)=f1 (x0 ) и limх®х0 f2 (x)=f2 (x0 ) на основании св-ва1 можем написать: limх®х0 у(х)=limх®х0 [f1 (x)+f2 (x) ]=

=limх®х0 f1 (x)+limх®х0 f2 (x)=f1 (x0 )+f2 (x0 )=у(х0 ). Итак сумма есть непрерывная фун.-

2.Всякая непрерывная фун непрерывна в каждой точке, в которой она определена.

3.Если фун z=j(х) непрерывна в точке х=х0 , а фун y=f(z) непрерывна в соот-й точке z0 =j(х0 ), то фун y=f(j(х)) непрерывна в точке х0 .

Если фун непрерывна в каждой точке некоторого интервала (а, в), где а<в, то говорят, что фун непреывна на этом интервале.

Если фун непрерывна в каждой точке некоторого интервала (а, в) и непрерывна на концах интервала, то говорят, что f(x) непрерывна на замкнутом интервале или отрезке (а, в).

Непрерывности на заданном промежутке

Ф-ия наз-ся непрерывной на пром-ке (a;b) , если она непрерывн в кажд т-ке этого пром-ка.

Свойства (small) :

1. достиг наиб и наим значения; 2. если м и М – наиб и наим знач-ия, то она достиг любые значения м<y<М; 3. если на заданном пром-ке есть хотя бы одна т-ка в кот ф-ия отрицат, то $ x0 на [a;b], f(x0 )=0.

Св-ва непрерывности на заданном промежутке (full):

1.Еслифун y=f(x) непрерывна на некотором отрезке [а, в] (а<х<в), то на отрезке [а, в] найдется по крайней мере одна точка х=х1 такая, что значение фун в этой точке будут удовл соот-ю f(x1 )³f(x), то значение фун в этой точке наз наибольшим знач фун y=f(x); и найдется по крайней мере такая точка х2 , что значения фун в этой точке будут удовл соот-ю

F(x2 )£ f(x), то знач фун в этой точке наз наименьшим значением фун y=f(x).

2.Пусть фун y=f(x) непрерывна на отрезке [а, в] и на концах отрезка принимает значения разных знаков, тогда м/у точками а и в найдется по крайней мере одна точка х=с, в которой фун обращается в нуль: f(с)=0, а<с<в.

3.Пусть фун y=f(x) определена и непрерывна на отрезке [а, в]. Если на концах этого отрезка фун принимает значения f(а)=А, f(в)=В, то каово бы ни было число m, заключенное м/у А и В, найдется такая точка х=с, заключ м/у а и в, что f(с)=m.

Производная.

1.Пусть y=f(x), xÎX, x0 ; x0 +Dx ÎX => Dy=Df(x0 )=f(x0 +Dx)-f(x0 ), Dy/Dx=(f(x0 +Dx)-f(x0 ))/Dx.

Если $ limDx®0 Dy/Dx, то этот предел наз-ся производн ф-ии в т-ке Х­0 . – Если f(x) имеет производ в кажд т-ке xÎX, то мы можем брать прозвол Х, считая его фиксир, х+DхÎХ. LimDх®0 (f(x0 +Dx)-f(x0 ))/Dx= =f/ (х)=df(x)/dx=dy/dx=y| (x).

2. Геометр смысл производ.

Производная фун f(x) в точке х0 равна угловому коэф-ту касательной к гр-ку фун f(x) в точке М (х0 ; f(x0 )).

Если т-ка М будет приближ-ся к т-ке М0 (при Dх®0), то секущая приближ-ся к касат.

Y| (x0 )=limDх®0 (f(x0 +Dx)-f(x0 ))/ /Dx=limDх®0 Dy/Dx=limDх®0 tga==lima®a0 tga=tga0 .

L: y-f(x0 )=f\ (x0 )(x-x0 )

Nl =y-f(x0 )=-(x-x0 )/f\ (x0 ).

3. Основ теоремы о производных.

1. y=U(x)+V(x), y| =U| (x)+ V| (x) . Док-во: для х+Dх имеем: y+Dy=(u+Du)+(v+Dv). Следовательно, Dy=Du+Dv, Dy/Dx=Du/Dx+Dv/Dx, y| =limDx®0 Dy/Dx = limDx®0 Du/Dx+ limDx®0 Dv/Dx=U| (x)+V/ (x).

2. y=uv, y| =u| v+uv| . Док-во: y+Dy=(u+Du)(v+Dv), Dy=(u+Du)(v+Dv)-uv=Duv+uDv+DuDv, Dy/Dx=Duv/Dx+Dvu/Dx+DuDv/Dx,

Y| = limDx®0 Dy/Dx= limDx®0 Duv/Dx + limDx®0 Dvu/Dx + limDx®0 DuDv/Dx={ limDx®0 Du=0, т. к ф-ия дифф-ма и непрерывна}=u| v+uv| .

3. y=u/v, y| =(u| v-uv| )/v2 . Док-во: y+Dy=(u+Du)/(v+Dv), Dy=(u+Du)/(v+Dv)-u/v=(vDu-uDv)/v(v+Dv)

Dy/Dx…

4. y=ax, y| =ax ln a. Док-во: ln y=x ln a, y| /y=ln a, y| =yln a y| =ax ln a.

Неявно задан фун и нахождение ее производ.

Говорят, что соот-е F(x;y)=0 задается неявно, если сущ фун у=f(x), х принадлежит отрезку [а, в] и, если подстав-е в F(x;y)=0 соот-е обращает его в тождество(º)- {F(x;y)=0,$у=f(x),х принадлежит отрезку [а, в],F(x;f(x)) º0}

Правило нахождения: Если F(x;y)=0 задает фцн неявно, т. е это будет тождество, то тождественное равенство можно по членно продифференцировать. {[F(x;y)]/ =0/ }

Формула Лейбница.

Y( n ) =(uv)(n) =(u)(n) v+nu(n-1) v| +([n(n-1)]/[1*2])*n(n-2) v|| +…+uv(n)

Дифференцирование ф-ии в точке.

Ф-ия y=f(x) наз-ся дифференцируемой в т-ке Х0 , если Dy=ADx+O(Dx), где А не зависит от DХ, О(DХ) – б. м., более высокого порядка малости, чем DХ, когда DХ®0, т. е. limDx®0 O(Dx)/Dx=0. АDХ – главная часть приращения.

Теорема : y=f(x) дифф-ма в т-ке Х0 т и тт, когда она в этой т-ке имеет конечную производную A=f\ (x0 ).

Необход усл-ие дифф-ти: если ф-ия дифф-ма, то она имеет кон производ. Дано: Dy=ADx+O(Dx)

F\ (x0 )=limDx®0 Dy/Dx= limDx®0 [(ADx+O(Dx))/Dx] = limDx®0 (A+O(Dx)/Dx)=A => Dy=f\ (x0 )Dx+O(Dx) => limDx®0 Dy=0 => f(x) – непрерывна.

Достат усл-ие дифф-ти: если ф-ия в заданной т-ке имеет кон производ, то она дифф-ма. Дано: $f\ (x0 ) – число, f\ (x0 )=limDx®0 Dy/Dx => Dy/Dx=f\ (x0 )+a(Dx) {a(Dч) – б. м.}, Dy=f\ (x0 )Dx+a(Dx)Dx => Dy=f\ (x0 )Dx+O(Dx), т. е. O(Dx)=a(Dx)Dx => limDx®0 O(Dx)/Dx=limDx®0 a(Dx)=0. Дифференциал ф-ии это главная часть приращения, линейная относит DХ.

Приближ знач ф-ии в некот т-ке: Dy=f(x0 +Dx)-f(x0 ) =>f(x0 +Dx)=f(x0 )+Dy”f(x0 )+df(x0 )=f(x0 )+f\ (x0 )dx, dx=Dx.


Пределы