Расчет поля между эквипотенциальными поверхностями в неоднородной среде в отсутствие объемного заряда

М. И. Векслер, Г. Г. Зегря

Это типичная ситуация в конденсаторе. Для ее рассмотрения используется уравнение Пуассона с ρ = 0, которое интегрируется с учетом условий φ(x1) = φ1, φ(x2) = φ2 (для плоскостного случая) или φ(r1) = φ1, φ(r2) = φ2 (сфера, цилиндр). Рассмотрим далее случай плоскости.

Далее можно дифференцированием по x найти поле Ex и Dx:

Следующий шаг – нахождение поляризованности и ее дивергенции, то есть связанного заряда ρ’:

В точках разрыва ε(x) (на стыке двух диэлектриков) производная ε'(x) обращается в бесконечность, формула для ρ’ cтановится неприменимой и надо искать поверхностный связанный заряд:

Обязательно проверяются условия на границах (в данном случае x1, x2) на наличие поверхностного связанного заряда:

В сферическом и цилиндрическом случаях надо правильно писать div в соответствующей системе координат. Выражения для φ(r) принимают вид:

φ(r)=
φ(r)=

После чего Er(r) и связанные заряды находятся аналогично тому, как это было сделано выше для плоскостного (декартового) случая.

Задача. Получить выражения для φ(r), Er(r), ρ ‘, σ ‘ в случае цилиндрической и сферической симметрии, если заданы зависимость ε(r), а также потенциалы граничных поверхностей φ(R1(2)) = φ1(2). ρ = 0.

Указание: Для промежуточной проверки использовать вышеприведенные выражения для потенциала.

Задача. Пространство между обкладками плоского конденсатора шириной d заполнено неоднородным диэлектриком c проницаемостью ε(x) = 1+α x. Найти φ(x), Ex(x), ρ ‘, σ ‘ на обкладках.

Решение: Будем считать, что конденсатор занимает область координат x = 0… d, причем потенциал одной обкладки (x = 0) равен φ1 = 0, а другой φ2 = U. Тогда зависимость потенциала от координаты находится как

После чего находим поле Ex(x) дифференцированием:

И далее получаем поляризованность Px:

Взяв дивергенцию, получаем объемный связанный заряд:

И еще проверяем условия на обкладках на наличие поверхностного заряда σ ‘:

σ ‘|x = 0=-Px|x = 0+ = 0
σ ‘|x = d=

Как и следовало ожидать, σ ‘|x = 0 = 0, поскольку у обкладки x = 0 диэлектрическая проницаемость равнa единице. Если U>0, то σ ‘|x = d<0, что тоже естественно: у обкладки x = d должен концентрироваться отрицательный связанный заряд. Для проверки найдем суммарный связанный заряд на единицу площали обкладки конденсатора – этот заряд должен оказаться равным нулю. Действительно,

=
=
=

Список литературы

1. И. Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. – 448 с.; или 2-е изд., М.: Наука, 1988. – 416 с.

2. В. В. Батыгин, И. Н. Топтыгин, Сборник задач по электродинамике (под ред. М. М. Бредова), 2-е изд., М.: Наука, 1970. – 503 с.

3. Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. – 661 с.


Расчет поля между эквипотенциальными поверхностями в неоднородной среде в отсутствие объемного заряда