Системы линейных уравнений

1. Критерий совместности

Система линейных уравнений имеет вид:

A11 x1 + a12 x2 + … + a1n xn = b1

A21 x1 + a22 x2 + … + a2n xn = b2 (5.1)

… … … … … … … … … … …

Am1 x2 + am2 x2 +… + amn xn = bm

Здесь аij и bi (i = ; j = ) – заданные, а xj – неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:

AX = B, (5.2)

Где A = (аij ) – матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1 , x2 ,…, xn )T,

B = (b1 , b2 ,…, bm )T – векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.

Упорядоченная совокупность n вещественных чисел (c1 , c2 ,…, cn ) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1 , x2 ,…, xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1 , c2 ,…, cn )T такой, что AC ≡ B.

Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.

Матрица

à = ,

Образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы (5.1) решается следующей теоремой.

Теорема Кронекера – Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и Ã совпадают, т. е.

R(A) = r(Ã) = r.

Для множества М решений системы (5.1) имеются три возможности:

1) M = Ø (в этом случае система несовместна);

2) M состоит из одного элемента, т. е. система имеет единственное решение (в этом случае система называется определенной);

3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (5.1) имеет бесчисленное множество решений.

Система имеет единственное решение только в том случае, когда

R(A) = n. При этом число уравнений – не меньше числа неизвестных (m ≥ n); если m > n, то m-n уравнений являются следствиями остальных. Если 0 < r < n, то система является неопределенной.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, – так называемые системы крамеровского типа:

A11 x1 + a12 x2 + … + a1n xn = b1

A21 x1 + a22 x2 + … + a2n xn = b2 (5.3)

… … … … … … … … … …

An1 x2 + an2 x2 + … + ann xn = bn

Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера;3) матричным методом.

2. Метод Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

3. Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т. е. определитель матрицы А

Δ = det (aij )

И n вспомогательных определителей Δi (i = ), которые получаются из определителя Δ заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

Δ – xi = Δi (i = ). (5.4)

Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

Xi = Δi / Δ.

Если главный определитель системы Δ и все вспомогательные определители Δi = 0 (i = ), то система имеет бесчисленное множество решений. Если главный определитель системы Δ = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

4. Матричный метод

Если матрица А системы линейных уравнений невырожденная, т. е.

Det A ≠ 0, то матрица А имеет обратную, и решение системы (5.3) совпадает с вектором C = A-1 B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X = C, C = A-1 B называют матричным способом решения системы, или решением по методу обратной матрицы.


Системы линейных уравнений